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EXECUTIVE SUMMARY

Past production work has shown that cryogenic tank su'ucture for the Shuttle booster
rockets and the Titan system have very high life cycle costs for the fuel tank su'ucturc. The tanks

are machined stiffener-skin combination that are subsequently formed into the required contour
aftermachining. The materialscrap rateforthese configurationsare usuallyhigh,and thelossofa

tank panel duc to forming or heat treatmentproblems isvery cosily. The idea of reducing the
amount of scrap materialand scrapped structuralmembers has prompted the introductionof built-

up structureforcryogenic tanks tobe explored on theALS program. A built-upstructureapproach

thathas shown improvements inlifecycle costover the conventional built-upapproach isthe use

of SPF stiffenedpanels (reducing the overallpartcount and weight for the tank_rcsistanccspot

welded (RSW) toouter tank skin material.The stiffenersprovide for generalstabilityof the tank,

while the skin material provides hoop directioncontinuityfor the loads. The objectiveof this

program was todesignand fabricateintegrallystiffenedsuperplasticformed AI-Li panelsthatcould
be used forfabricationof low costcryogenictank structurefor theALS family of vehicles.

TASK 1: PANEL DESIGN AND ANALYSIS

The ALS vehicles have been designed for relatively high launch rates and high launch
availability. The vehicle is intended to remain on the launch pad through quite severe weather
conditions, and launch without a launch or umbilical tower. ALS loads (refer to Table S-1) were

supplied to Rockwell International from the General Dynamics AI_,S-L vehicle configuration which
was made up of a core and an external booster. The loading conditions took into account ground
handling, ground winds, maximum flight winds (Max Alpha-Q / Max Beta-Q), and booster bum
out.

Table S-1. Design Load Conditions

1. N x = -4237 Ib/in. 2. N x = -8474 lb/'m.

Ny = 0 lb_n. Ny = 0 Ib/'m.

Nxy = 1028 lb/in. Nxy = 416 Ibm.

3. Nx = +8474 Ib/in. 4. N x = -7607 Ibfm.

Ny = 0 Ib/in. Ny = +7002 Ib/'m.

Nxy = 416 Ib/in. Nxy = -I19 Ibm.

5. UltimateTank Pressure = 56 psi

6. Temperature = Ambient

_The technology_ven _uirements when coupled with the high loading conditions typical of

the ALS vehicles created some unique design challenges for optimizing the performance of light
weight structure. The first step in the design of the panels was to establishment of the baseline

design concept (refer to Figure S-1) and assess the structural efficiency of the conventional
baseline concept versus the SPF stiffener designs.

Several SPF s_encr designs were deveioped that would carry the launch loads and provide

for improvements in the smacmmI efficiency of the stiffened panels. A qualitative trade study Was
conducted with Rockwell and General Dynamics personnel to down select three stiffener

configurations that would be optimized, and tested as crippling stiffener panels: the selected
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L concepts were the stepped hat with curved cap, beaded web with fiat cap, and the beaded web with
the curved cap (refer to Figure S-2).

_1-- 136"--_

2.56"

L _ 60 H

Figure S-1. Baseline Conventional "T" and Hat Stiffener.

• L__ CRIPPLING PANEL DESIGN AND ANALYSIS:

A 15 inch length was selected to insure local buckling of the crippling specimen panels during
testing. Single hat-stiffener NASTRAN finite element models were developed to study and
visualize the buckling modes of the SPF stiffeners, and to compare results to the PASCO analysis.
The NASTRAN buckling analysis solution resulted in an eigenfactor of 1.248 for the first buckling

mode. This would be equivalent to a loading of 1.248 x 10,000 Ibsfm. x 6 in. = 74,880 lbs for the
Type 1 specimen. The NASTRAN results were considered to be in close agreement with the
PASCO program. The predicted failure modes and loads are tabulated in Table S-2.

Stiffener Type

Stepped Hat
With Curved Can

Stepped Hat
WiuhCurved C_
Beaded Web Hal

orCurvedCg'*
Beaded Web Flat

TABLE S-2. Predicted

i

Material Combinations

Skin

7475/2219 A1

J StLffcncr

7475 SPF AI

2090 AI-Li 2090 SPF AI-Li

7475/2219 AI 7475 SPF AI

2090 AI-Li 2090 SPF AI-IA

or Curved Cap*
O

Ultimate Uniaxiai Loads.

Predicted Ultimate
o_al Lo-_

.256 76,800 Lb.
@,000 Lb.

.252 68,000 Lb.

.264 60,000 Lb.
79.200 Lb.

.252 60,000 Lb.
68,000 Lb.

Critical
Areas

Crippling
Yield Skin

Comp
Ykld Hat

Comp. Yield Skin
Skin Wrinkle

Comp. Yield
Hat

Based upon PASCO analysis, the difference in the Ultimate loads for the fiat or curved cap configurations was
insignificant, thus both configurations are shown together in the table.
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INTEGRALLY STIFFENED STRUCTURE:

The overall stability of the tank required intermediate frames to be placed along the vertical
length of the tank at 30 inch intervals (as observed from singly stiffener models at 15, 30 and 60
inch intervals during the development of the optimum stiffener configuration). The objectives of
the providing an integral ring design were as follows:

• Enforce a simple support node at the integral ring to prevent Euler column failure
• Fabricate the stiffeners and integral ring with one forming operation (one-step forming) to

mlnlmiTe fabrication cost

• Provide load path continuity for the Nx and Ny loads

The establishment of the integral ring stiffness utilized the "Theory of Elastic Stability"
published by S. Timoshenko presented as follows: (8474 Ib/in loading condition utilized for this
analysis)

Kreq'd = (16xEEIstiff)]I.,3

L "-]

-I

W

_ z

W

Kreq'd = (I6 x 9.817 x 11.5 x 106 x .48)/(60)3 = 4035 lb/in (to enforce simple support node)

The preliminary analysis indicated that for the particular loading scenario, an integral ring with an I

= 3 in4 would enforce the node. As a result of the preliminary analysis, several node conditions
were examined for the barrel section, along with the effects of the different loading conditions on
the node geometry.

Optimization of the node intersection was continued with the development of a detailed
NASTRAN f'mite element model on the a large scale panel with a 30" node to better simulate and
optimize the panel behavior under different loading conditions. The sizing of the interim ring with
the NASTRAN analysis resulted in a design that provides maximum efficiency for the node (refer
to Figure S-3).

•,.1 J

.,.,,,...%

Figure S-3. Example of One Integral Node Configuration for SPF Stiffened Structure.
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COLUMN BUCKLING PANEL:

At the completion of the crippling panel tests, the stepped hat stiffener configuration was
chosen for continued development based on its load carrying capability. The stepped hat stiffener
was modeled under NASTRAN and optimization of the stiffened structure was conducted.
PASCO analysis of the stepped hat stiffener was conducted with a larger cap width to enhance the

Ve.r_U stability of the structure. The panel configuration was chosen based upon the desired
ngm ot the panel (column of at least 60 inches) and limited by the width of available material (48"

minus sealing area). The resulting panel design (refer to Figure S-4 and S-5) maintained the inter-

stiffener and inter-spot spacing developed during the development of the crippling stiffener panel.
The column buckling panels projected load carrying capability is shown in Table S-3.
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Figure S-4. Column Buckling Panel Configuration. m
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Figure S-5. Optimized Stepped Hat with Wider Cap Used for the Column Buckling Panel.
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Table S-3. Column Buckling Panel Predicted Failure Loading.

SPF Material tba r Predicted Column Predicted Thickness
(in.) Failure Loading Inter-spot Crippling (In.)

7475 A1 0.255 6510 lb/'m 41 Ksi *t o = 0.05

(0.100 Starting Gage) (25.5 Ksi) *t i = 0.091

0.2452090 A1-Li

(0.090 Starting Gage)
is

6840 lb/'m

(27.9 I_i)

Average measured thickness from Column Buckling Pz_el.

37.4 Ksi *t o = 0.046

*t i = 0.08

DOUBLER-REINFORCED FUSION WELD:

The final panel configuration examined during this program was the vertical fusion weld or
panel-to-panel joint. This joint configuration was based upon past work at General Dynamics
Space Systems Division on the ATLAS and Centaur upper stage. This doubler-reinforced concept
(refer to Figure S-6) eliminates the need for machined weld lands (commonly used for launch
vehicle pressure vessels at an increased fabrication cost, and weight penalty to the structure) to
reinforce the joint by utilizing the doubler as a major load carrying member for the fusion weld.
The development of the joint was based upon the fusion weld and resistance spot weld data
generated during task 3 of this program. Specific doubler testing was conducted under task 3 that
provided a greater understanding of the behavior of the doubler over the Variable Polarity Plasma
Arc (VPPA) fusion weld for load transfer. The test data was then utilized with finite element
modeling techniques to predict the behavior of the fusion weld joint during hi-axial (axial and
hoop) loading conditions.
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Figure S-6. Vertical Doubler-Reinforced Joint on the ALS Vehicle.
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Two verification runs were made with the model. The f'u'st evaluation involved application of
a compressive axial load of 1000 lbfm to the model and evaluate the uniformity of the load and the
stress across the joint. The model produced a uniform stress in the plate elements of -3500 psi
which correlated with the expected stress of-3921 psi (due to Tbar of the section = 0.255 inch and

o = -1000 lb per inch / 0.255 in, where the -1000 lb was taken from the elastic portion of the
fusion weld stress strain curve). The second verification run utilized a failure load of 7500 lb/in,

obtained from the dog-bone tests, for the hoop direction. The anticipated point of failure is in the
fin'st row of spot welds indicated by both the dog-bone test and the model, despite a 30,000 psi
load across the fusion weld. It was concluded that the model produced a reasonable representation
of the stress distribution across the joint for bi-axial testing, and that test results should be similar
to the simulation.

TASK 2: SUPERPLASTIC MATERIAL CHARACTERISTICS

Superplastic characterization of the materials used during this program involved

metallographic examination of the material prior to and after forming, static exposure to elevated
temperature (for grain stability), uniaxial tensile testing at constant strain rate and variable strain
rate with and without back pressure, and finalIy produc_bility for_ng trials_ These
characterization tests have been developed at Rockwell to provide information on the starting grain
size of the material, stability of the grain size due to elevated temperature exposure, the presence or
absence of recrystallization during forming or grain growth during forming, flow stress of the
material at various strain rates, flow stress of the material with varying amounts of back pressure,
flow stress whereby superplastic elongation is maximized, requirements for suppression of
cavitation, and formability characteristics for each alloy.

The aluminum and aluminum-hthium materials examined during this program included 7475
A1, a material that has been used on several programs at Rockwell, two production A1-Li alloys,
and one experimental A1-Li alloy. The characterization study for the 7475 AI material was limited
to verification of urdaxial superplastic tensile properties and metallography in order to determine the
quality of the material prior to fabrication. Additional tests were run on the 2090, 8090, and x2095
alloys to fully characterize each material. The optimum superplastic forming parameters are shown
in Table S-4.

Table S-4. Summary of Optimum Superplastic Forming Parameters.

ALLOY 7475 AL 2090 AL-LI 8090 AL-LI 7,2095 AL-LI
Wt.-O49

Forming Temp.(*F) 950 960 960 915

Strain Rate ( x 10 -3 s-I) 0.2 2.0/0.2 2.0/0.2 0.6

Flow Stress (ksi) 0.25 1.5/0.4 1.510.3 0.85

Back Press'm'e (psi) 400 400 400 600

The fabrication of producibility pans of 7475 AI, 2090 AI-Li, 8090 A1-Li, and the x2095 AI-Li
(Weldalite-049) materials was conducted immediately following completion of the uniaxial
characterization of each material. All of the materials used during the program were formed with
existing tooling into simple pan shapes to ensure proper translation of the uniaxial data into the
manufacturing environment. The initial pans formed from 2090 and 8090 A1-Li materials were
immediately quenched (utilizing several different quench rates) upon removal from the tool, stored

at 20°F to retard natural aging, sectioned, and shipped to Washington State University in dry ice

xxvii
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storage for inclusion in the heat treatment evaluation. Large producibility pans (18" x 18" x 6")
were also fabricated from 7475 A1, 2090 and 8090 A1-Li during the program for use during the
resistance spot weld parameter development at General Dynamics and for generation of engineering
design data at Alcoa.

TEST MATRIX AND COUPON CONFIGURATION FOR 2090 AND 8090
ALUMINUM-LITHIUM:

A data base of mechanical property and corrosion resistance performance of the 2090 and
8090 Al-Li materials procured for this program was generated on formed and non-formed samples.
The test material (both formed and unformed) was solution heat treated, quenched, and artificially
aged to a peak -T62 condition.

Ambient Tensile

Ambient room temperature tensile tests were conducted in accordance with ASTM E8
specification. The ambient tensile data for 2090 Al-Li is represented in Table S-5 with the
specimen orientation and forming strain.

Table S-$. Pre- and Post-SPF Mean Ambient Tensile Results for 2090 AI-Li.

w

JL

Orientation

L
I
I
I
I
I
I
V

T
I
I
I
I
I
I
I

V

Fill

63.3
64.2
63.2
60.5
63.1
63.3
63.1
62.3

63.4
62.6
60.8
62.0
62.8
62.1
61.3
60.1
59.1

Fty
(ksi_
52.8
50.3
49.1
48.3
50.2
50.6
50.2
50.3

52.7
50.7
47.2
47.9
48.7
48.0
48.5
47.8
47.8

Elongation

4.0
5.0
5.0
4.0
4.0
3.0
3.5
4.0

6.0
9.0
7.0
9.0
9.0
9.0
8.5
7.0
7.0

Effective
True Swain

0.000
0.189
0.240
0.279
0.301
0.319
0.340
0.372

0.000
0.217
0.240
0.254
0.275
0.3O4
0.321
0.366
0.439

E

(m_i)
12.9
14.3
10.1
11.2
12.5
11.0
14.2
11.1

12.7
14.4
11.6
10.9
11.2
14.5
11.3
11.3
11.7

The ambient tensile data for 8090 AI-Li is represented in Table S-6 with the specimen
orientation and forming strain. As with the 2090 data, it was observed that the ambient tensile
behavior of the 8090 Al-Li material does not change significantly with superplastic strain for either
the longitudinal or transverse specimens.

Cryogenic Tensile

Smooth tensile tests were performed for 2090-T62 and 8090-T62 aluminum-lithium material
at cryogenic temperatures. The cryogenic test results are shown on Table S-7 and S-8. The
overall strengths and elongations increased with the decrease in temperature which is typical of
aluminum materials. However, the ultimate and yield strengths of the coupons did decrease
slightly with increasing forming strain.
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Table S-7.

Table S-6.

Orientation

L
I
I
1
i
I
f
I
V

T
I
I
I
I
I
I
I
V

Pre- and Post-SPF Mean Ambient Tensile Results for 8090 AI-Li.

Ful

.0_i)
66.6
67.8
67.0
64.0
66.5
66.2
66.1
66.8
62.7

Fry
(_i_
54.9
57.8
56.6
57.1
56.7
57.8
54.9
56.2
54.4

47.7
47.0
52.3
52.9
52.8
52.2
50.3
47.5
51.0

Elongation

4.0
3.0
4.0
2.0
4.0
4.0
4.0
5.0
4.0

7.0

5.0
5.0
6.0
6.0
6.0
8.0
7.0
5.0

60.1
57.8
65.4
66.1
66.2
65.7
64.7
60.4
63.8

Effective
True Strain

0.000
0.111
0.125
0.139
0.158
0.168
0.182
0.198
0.236

0.000

0.095
0.108
0.116
0.136
0.165
0.198
0.234
0.259

E

(m_i)
11.4
13.0
12.0
13.0
13.0
12.0
13.0
12.4
11.0

11.0
12.9
12.0
13.0
13.0
13.0
10.6
12.0
11.2

Cryogenic Temperature Smooth Tensile Test Results for 2090-T62 and 8090-T62
Pre- and Post-Superplastic Formed Sheet at -60°F.
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All0y
Temper

2090-T62
14

61

64

61

8090-T62
C4

6*

61

i"

#4

_t

6"

e6

Coupon
I.D.

316-I-LI
316-I-L2
316-I-TI

3!6-I-T2
322-LI
325-L2
324-I..3
323-L4
322-TI
325-T2
324-T3
323-T4

315-3-LI
315-3-L2
315-3-TI
315-3-T2
36I-LI
361-L2

359-L3
359-L4
359-TI
359-T2
359-T3
359-T4

SPF
Condition

I_e-SPF
Pre-SPF
I_e-SPF
Pre-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF

Pre-SPF
Pre-SPF
Pre-SPF
Pre-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF

Specimen
Thickness

(m)

0.09045
0.09045

0.09010
0.08995
0.06675
O.07OOO
0.07220
0.06710
0.06395
0.07065
0.07185
0.07035

0.08730
0.08680
0.08705
0.08715
0.08035
0.07870
0.07230
0.07315
0.07040
0.07195
0.07885
0.07600

D : Coupon Failed Outside of Middle of Gage Length.
F = Coupon Failed at Fillet.

Test

Temp.

-60
-60
-60
- 60
-60
- 60
-60
-60
-60
-60
-60
-60

-60
-60
-60
-60
-60
- 60

-60
- 60
-60
-60
-60
-60

Fm Fry El

¢ksi) :ks_ f%)
68.1 54.0 4F
67.5 54.0 4F
65.3 52.9 10
65.1 52.9 10
67.1 52.3 4F
67.9 51.5 5F
66.6 51.3 4F
66.8 51.3 5F
62.9 50.4 6F
63.9 50.8 9
61.5 47.8 9
63.0 49.6 10

70.4 55.5 7D
71.4 56.0 9
62.1 48.4 13D
62.0 48.3 13
68.8 55.2 6F
68.7 56.1 6F
62.6 50.1 3F
65.5 50.9 6F
59.1 46.5 8D
60.5 43.3 7F
60.4 47.1 7F
60.8 47.5 8F

Effective
True Swain
Thickness

0
0
0
0

0.2989
0.2513
0.2204
0.2936
0.3417
0.2421
0.2252
0.2463

0

0
O
0

0.0909
0.1117

0.1965
0.1848
0.2231
0.2014
0.1098

0.1466
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Table S-8. Cryogenic Temperature Smooth Tensile Test Results for 2090-T62 and 8090-T62
Pre- and Post-Superplastic Formed Sheet at -320°F.

Alloy
T_-rmer

2090-T62
t6

SS

64

II

t4

U

H

Jl

II

8090-T62

61

tl

U

le

Sl

tl

64

D= COuponF_ed

Coupon
I.D.

316-1-L1
316-1-L2
316-1-T1
316-1-T2

322-LI
325-L2
324-I.3
323-LA
322-T1
325-T2
324-'1"3
323-T4

315-3-L1
315-3-L2
315-3-T1
315-3-T2
361-L1
361-L2
359-L3
359-L4
359-T1
359-T2
359-T3
359-T4
Outside

SPF

Pre-gPF
Pre-SPF
Pre-SPF
Pre.-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Pre-SPF
Pre-SPF
Pre-SPF
Pre-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF

Thickness

rm_
0.09055
O.09050
0.09025
0.09045

0.06765
0.06875
0.07290
0.06765
0.06060
0.07155
0.06970
0.06915
0.08710
0.08680

TestTemp.
ffF3

-320
-320
-320
-320

-320
-320
-320
-320
-320
-320
-320
-320
-320
-320

0.08695 -320
0.08710 -320
0.07730 -320
0.07900 -320
0.06920 -320
0.07570 -320
0.07040 -320
0.07305 -320
O.O7970 -32O
0.07690 -32O

Fat Fry El
t3csi_ fksi) (%)

83.0 57.3 8F
85.1 56.6 12D
78.3 57.6 18
78.2 57.3 18
82.8 55.0 9F
79.8 54.5 8D
83.6 54.3 IOF
83.3 54.8 10F
75.7 53.7 15F
77.1 55.7 17
75.1 52.9 17
76.9 54.5 13F
87.4 58.7 10D
88.0 58.8 17D
74.6 52.4 17D
74.8 59.1 83
85.0 59.8 10F
87.2 54.7 9F
82.4 54.9 8F
81.7 51.3 12F
73.4 50.8 13F
73.4 52.1 12F
74.1 49.4 12F
72.6 47.5 8F

0fM_ddle of Gage Length. F = Cou _on Failed at F'dlet.

Eft.TrueS_tin
Thickness

0
0
0
0

0.2989
0.2513
0.22O4
0.2936
0.3417
0.2421
0.2252
0.2463

0
0
0
0

0.0909
0.1117
0.1965
0.1848
0.2231
0.2014
0.1098
0.1466

Compression

The compressive yield strength was determined in accordance with the ASTM E-9
specification for 2090-'1"62 and 8090-T62 Pre- and Post-Superplastic formed sheet The
compressive strength coupons were machined to a uniform thickness to prevent buckling or
improper failure of the coupons during testing. The results from the compressive tests are shown
in Table S-9.

Table S-9. Compressive Strength of 2090 and 8090 Pre- and Post-Superplastic Formed Sheet
Heat Treated to -T62.

Alloy
Tenmer

.2090-T62

_t

14

*e

ii

8090-T62

t*

66

_4

14

Coupon

LD.

316-2-LI
316-2-L2
316-1-T1
316-1-'I"2
360-L1
360-L2
360-T1
360-T2

315-2-L1
315-2-L2
315-2-T1
315-2-T2
357-L1
359-L2
357-T1
359-T2

$PF Condition

Pre-SPF
Pre-SPF
Pre-SPF
Pre-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF
Pre-SPF
Pre-SPF
Pre-SPF
Pre-SPF

Post-SPF
Post-SPF
Post-SPF
Post-SPF

Thickness
Cm3

0.058
0.058
0.091
0.091
0.066
0.058
0.052
0.060
0.088
0.088
0.088
0.088
0.063
0.047
0.046
0.059

Specimen Width
Cm)

0.625
0.624
0.623
0.622
0.625
0.625
0.624
0.625
0.623
0.622
0.622
0.621
0.625
0.625
0.625
0.625

Icy
(ksi)

58.5
58.0
56.6
56.4
59.6
58.3
61.0
59.1
58.7
59.1
51.6
51.9
57.0
57.2
55.3
55.1

Ave. Fcy
fksi)

58.3

56.5

59.0

60.0

58.9

51.8

57.1

55.2

Specimens were machined to achieve uniform thickness.
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Exfoliation Corrosion

Exfoliation corrosion test were carried out in accordance with ASTM G85 Annex 2

MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittence Spray). All of the 2090

specimens received an exfoliation rating of A (mild exfoliation). Three of the four specimens
exhibited only minor pitting and one specimen exhibited some pit blistering. All of the 8090

specimens received an exfoliation rating of C (severe pitting) and all experienced pit blistering.
Protection of these materials for long periods of times in corrosive environments is recommended.

Fracture Toughness

Fracture toughness were tested using the center crack tension test for stable crack growth
under smile loading with a measurement of strain compliance with load increase. The fracture
toughness (Kc) values at a maximum load are shown in Table S-10. There was substantial scatter

in the results, however there was no direct evidence of an effect on the toughness of the material
due to the SPF process. The 8090-T62 Kc values were slightly higher than those measured for
2090-T62, however, Kc is only one point on the R-curve and that general observation may not
apply to the entire R-cm've.

Table S-10. Ambient Fracture Toughness for 2090-T62 and 8090-T62 AI-Li Materials In the
L-T Direction, to = 0.090.

Alloy - Temper

2090-T62

8090-T62

SPF Condition

Non-Formed

Formed

Non-Formed

Formed

Fr_,--ture

Toughness

Kc (ksi4in)

48.3

52.0
39.4

52.8

52.9

66.8

60.3

48.8

Effective

True Sta'ain

(¢)
0
0

0.250

0.20"/

0

0

0.155
0.208

POST-SUPERPLASTIC FORMING HEAT TREATMENT OPTIMIZATION
FOR 2090 AND 8090 ALUMINUM-LiTHIUMI

The A1-Li based alloys have been shown to offer highly desirable properties for the aerospace
industry, particularly in the reduction of density and concurrent increase in the elastic modulus,

leading to significant improvements in the specific modulus over the more conventional AI alloys.
The development and application of these alloys, however, have been found to be significantly
challenged by a number of technological difficulties which have included the achievement of high
strength with sufficient ductility for structural applications.

Historically, thermomechanical processing of aluminum and aluminum-lithium alloys has been

utilized to provide for a balance of strength and ductility for conventional product forms.
However, superplastic forming (SPF) does not lend itself to stretching a completed part before
aging for attainment of maximum strength. SPF processing, by its nature, involves forming of
complex shapes at temperatures well in excess of those used for aging or annealing of the alloys
(structural complexity can be increased far beyond conventional forming methods with the use of
the SPF process). The formed configuration must then be solution heat treated, water quenched,
and aged in order to attain peak strength or a -T62 condition in the material prior to use.
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A study was initiated in order to assess the potential for elimination of the solution heat
treatment (SHT) of the formed part from the manufacturing process. The aim of the study was to
develop a thermal processing procedure for the alloys whereby the part could be quenched direcdy
from the forming process and artificially aged prior to trimming without a sacrifice to material

properties. The optimization of the heat treatment for 2090 and 8090 examined the strengthening
response of the material with different solution heat treatment temperatures, quench rates, and
aging practices. The issue of out of tool quench was examined as a replacement for solution heat
treatment-quench processing of the formed parts to minimize distortion, solute depletion, and
reduce overall cost during fabrication of the SPF parts.

Tensile Results

The tensile properties for both alloys aged after SPF processing without a solution heat
treatment are as good as, or better than, those with a solution treatment at higher temperatures. The
highest strengths were observed both of the materials when they were superplastically formed and

directly quenched in water followed by artificial aging at 180°C (356°F). Both SPF processed

alloys show some quench sensitivity, however, high strength values were obtained from all three
quench rates used during the study. The test results indicated that the fastest cooling rate following
SPF process provided the highest strength values after artificial aging.

Optimized heat treatment parameters were suitable for achieving the program goal of yield
strength levels greater than 50 ksi for both alloys (2090 and 8090). Selected post-SPF heat
treatments resulted in yield strengths of the order 50-54 ksi for the 8090 alloy and 57-70 ksi for the
2090 alloy. An unexpected, but interesting result observed was that the higher strengths were

generally observed for the alloys when aged directly after forming, where the forming acted as the
solution heat treatment. When the same material was solution heat treated and aged, the strength

levels were no better, and in many cased lower than, those for the aforementioned condition. This
result is highly desirable since it suggests that parts may be superplastically formed and heat treated
without need to conduct an additional high temperature process, that of the solution heat treatment.
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TASK 3: JOINING

The built-up cryogenic tank structure approach required attachment of the stiffeners to skin
materials in such a way that the tank would remain sealed at both ambient and cryogenic

temperatures. Historically, fuel tanks and lines used for cryogenic fuel systems have been fusion
welded in order to assure a leak free structure. In the cryogenic fuel tank, the vertical welds (panel

to panel) and the welds between the barrel sections and the major ring frames will be fusion welded
in order to assure proper sealing of the pressure vessel. However, the attachment of the stiffeners
to the outer skins required a permanent, leak free methodology that would be reliable both during
storage of the tank and during flight. Since mechanical fastening of the stiffeners to the outer tam:
skins would not provide for a leak-free surface, alternative attachment methods were examined for

the built-up configuration.

The primary method examined during this program was resistance spot welding of the
stiffeners to the outer skin panels. The resistance spot welding approach provided a leak-free
condition in the cryogenic tank for attachment of the stiffeners to the skins, whether the stiffeners
were attached to the inner surface of the tank, or to the outer surface. The second method of

attachment examined briefly during the program was adhesive bonding of the stiffeners to the skins
on the external surface of the cryogenic tank. Several adhesive systems were examined and tested

under laboratory conditions for evaluation of flat-wise tensile and shear behavior at ambient and

cryogenic temperatures.
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ADHESIVE BONDING:

An engineering survey of adhesive materials with cryogenic service capabilities was
conducted. The list of adhesives that were selected as candidates for the cryogenic tank are shown
as Table S- 11.

Table S-11. Candidate Cryogenic Structural Adhesives.

Adhesive

Hysol EA 9330
Crest 810 A&B

Crest 7344 A&B

Crest 3710 A&B

Crest 212 A&B
PRC 1665
PRC 1649

BF Goodrich PL-7T'/

Type

Epoxy Paste

Polyurethane Paste
Epoxy Paste

Polyurethane Paste

Polyurethane Paste
Polyurethane Paste

Polyurethane Paste

Curin_ Temperature (*F)

Room Temp.

Room Temp.

Room Temp.
Room Temp.
Room Temp.

130

250

Preliminary ambient and cryogenic adhesive testing were conducted with production-ready

materials on an aluminum-lithium substrate. Lap shear (0.5 in 2 surface area) and fiat-wise tensile

(1 in2 surface area) results are shown on Table S-12. Flat-wise tensile results that are reported as

NC (not completed) failed the 2090-T83 parent metal in bearing rather than the adhesive. Overall
the adhesives performed very well during the evaluation. However, the 7344 A&B was selected
as the most promising material for cryogenic application.

Table S-12. Adhesive Prel|minary Test Results.

ADHESIVE

CRESTS

810 A&B

TYPE

Products

Rsch. Corp.
PRC 1665

PASTE

7344 A&B PASTE

2i2 A&B PASI_

PASTE

LAP-$HE_, (Psi)

+

5970

6030

1576

FLATWISE TENSILE (psi)
NC

NC

650

TESTTEMP. (*ID
-320

-165

RT

4690

4680

839

2940 NC -320

RT 4380 11941 -165

4565 4542 RT

RT

130

7190

5540

676

NC

NC

1927

NC

NC

1350

RESISTANCE SPOT WELD DEVELOPMENT:

-320

-165

RT

-320

-165

RT

" Chamcte_on of the resistance spot weld (RSW) parameters for the materials used during

this program utilized the Taguchi design of experiments. The Taguchi experiment process
minimized the number of coupons that needed to be tested while evaluating the characteristics of
the weld process as a function of the processing variables. Both the 7475-T62 to 22i9-T81, and

the 2090-T62 to 2090-T83 material combinations were examined with the Taguchi methodology.
Once the optimum weld parameters had been isolated by this technique, standard test
methodologies for development of the behavior of the weld were utilized.

Resistance Spot Weld Development for 7475-T62 Joined to 2219-T81

The test results for the optimum weld schedule developed for the 7475-T62/2219-TS1 material
combination using the Taguchi methodology is shown in Table S- 13
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Table S-13. Test Results for Optimized 7475-Tf212219-T81 RSW Schedule.

Coupon I.D. Nugget Diameter Nugget P_netratiort Shear
inch %_ Sheet 1% Lower Sheet lbs

Average 0.351 68.8 32.9 3456

Nugget penetration in 0.100" 7475-T62 sheet / penetration into 0.190" 2219-81 sheet.

Weld schedules developed for the crippling test panels were verified through certification
testing. The average lap shear test value for the schedule was 2909 pounds, the average nugget
diameter was 0.303", nugget penetration into the 7475-T62 (the thinnest sheet) was recorded
between 61 to 80% of the sheet thickness and nugget penetration into the 2219-T81 (the thicker)
sheet was between 18 and 30%.

Sheet Efficiency

Sheet efficiency tests were performed on the 2219-T81 material in order to determine the
"knockdown" to the ultimate tensile strength for a given skin section after spot welding. The sheet

efficiency test results are shown in Table S-14 for 2219-T81 skin.

Table S-14. 0.190" 2219-T81 Aluminum Skin Efficiency (or Reduction In Ultimate Tensile
Strength) After Spot Welding of 0.100" 7475-T62 Stiffeners.

Material Type Test Temperature Ftu

2219-T81 20 62.1
* Note: Ratio taken from actual test data ratherthan allowable data.

Sheet Efficiency

62.1/65.6" = 94.75

Resistance Svot Weld Spacing

Resistance spot weld spacing tests were performed in order to determine the effects that inter-
spot spacing has on weld strength and quality. Continuous sheet test specimens were welded from
0.100" 7475-T62 joined to 0.190" 2219-T81 using a certified weld schedule with inter-spot
spacings of 0.75", 1.00", 1.25" and 1.5". Results from the tests are shown in Table S-14.

Schematic for inter-spot spacing test.

° -"IY
I

I

0 O0 0 O0 00'0

x = Inter-spot spacing
y = Width of Lap shear coupon
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Table S-15. Resistance Spot Spacing Test Results for 0.100 inch 7475-T62 to 0.190 inch
2219-T81 Aluminum.

Schedule: Weld Heat (36 percent), Weld Time (6 cycles),
SpotWeld
Spacing

('inch)

0.75

1.00

1.25

1.50

Single Spot

Coupon I.D.

1SSI-I
1SS1-2
1SS1-3
1SS1-4
1SS1-5
1SS1-6
1SS1-7

Average
1SS2-1
1SS2-2
1SS2-3
1SS2-4
1552-5
1SS2-6
1SS2-7

Averaee
1SS3-I
1SS3-2
1SS3-3
1SS3-4
ISS3o5
1SS3-6
1SS3-7

Average

1SS4-1
1SS4-2
1SS4-3
1SS4-4
1SS4-5
1SS4-6
1SS4-7

Avera2e
1SS5-1
1SS5-2
tSS5-3
1555-4
1SS5-5
ISS5-6
1SS5-7

Average

Nugget
Diameter

Cinch)
Diffusion

Diffusion

Diffusion

Diffusion
Diffusion

Diffusion

0.300

0.260

0.290
0.283
0.300

0.300

Diffusion

0.300
0.300
0.300

0.300

0.290

0.325
0.304
O.325

0.315

0.300

0.310
0.313

Weld Force (15 psi), Forge Force (24psi),Squeeze(55).
Nugget

Upper Sheet
Cmch_

Diffusion

Diffusion

Diffusion

Diffusion
Diffusion

Diffusion

.050

.045

.040
.045
.045

.045

Diffusion

.050
.047
.060

.050

.040

.050
,050

.050

.045

.045

.050
.048

PenetrationShear
Lower Sheet

I Cn'_h)

Diffusion

Diffusion

Diffusion

Diffusion
Diffusion

Diffusion

.020 - .O40

.015 - .040

.010 - .030
.015 _ .037
.015- .O40

..015- .045

Diffusion

.020- .050
.017 - .045
.020- .045

.020 - .O40

.010 - .025

.025 - .050
.019 - ,040

.010 - .040

.015- .030

.020 - .025

.025 - .050
.018- 0.036

Strength

2292

2413

2431

2379

2O47

2469

2246

22_;4

2569

2908

2685

2721

2421

2347

2394

2387

2267

2769

2432

2489

The spot spacing tests revealed that there was not a significant decrease in lap shear values
as spot spacings decreased from 1.5" to 0.75", however, a decline in nugget diameters was noted.
Furthermore, spot weld penetration into the 0.100" sheet showed a slight decrease with the
decrease in spacing. The penetration into the 0.190" sheet resulted in a decrease in minimum

penetration as spacing decreased biit maxim penet_atl/)n remained uncla_ged. The most
unportant observation was that as the spot weld spacing decreased, the greater the shunting effect
to the adjoining spot weld, which resulted in a greater probability for diffusion spot welds. A spot
weld spacing of 1.25" was selected for panel design and fabrication.
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Cryogenic Test Data 7475-T62 Joined to 2219-T81 Aluminum

Tests were performed on the 2219-T81 material in order to determine the effect that
cryogenic temperature had on sheet efficiency (refer to Table S-16). A decrease was noted as
temperature decreased.

Table S-16. 0.190" 2219-T81 Aluminum Skin Efficiency (or Reduction in Ultimate Tensile
Strength) After Spot Welding of 0.100" 7475-T62 Stiffeners.

Material Type Test Temperature Ftu

2219-T81 -320 74.8

•-423 86.0

• Note: Ratio taken from actual test data rather than allowable data.

Sheet Efficiency

74.7/81.9" ,- 91.3
86.0/95.5* = 90.0S

Tensile evaluation was performed at cryogenic temperature for the 7475-T62/2219-T81
material combination in order to assess the effect on lap shear to decrease in temperature. The
results are shown in Tables S-17 and S-18. An increase in lap shear was recorded as the
temperature decreased from ambient to cryogenic.

Table S-17. LN 2 (-320°F) Cryogenic Resistance Spot Weld Test Results 0.100 inch 7475-
T62 to 0.190 inch 2219-T81 Aluminum.

! --==

Coupon lD

Average

Nugget Diameter
(inch)

0.354

Nugget Penetration

% Upper Sheetl%LowerSheet7475-T62 2219-T81
62.0 24.4

Table S-18. LH 2 (-423°F) Cryogenic Resistance Spot Weld Test Results
T62 to 0.190 inch 2219-T81 Aluminum.

Shear

0bs)

4346

0.100 inch 7475-

1 r

|

w

_U

Coupon ID

Average

Nugget Diameter
(inch)

0.349

Nugget Penetration
% Upper Sheet [% Lower Sheet

7475-T¢_2 I 2219-T81
62.0 23.6

Shear

Obs)

4134

Exposure After Cleaning

Pre-weld "out-time" cleaning tests were performed in order to determine acceptable
cleaning methods for aluminum alloys and determine the amount of time after cleaning that
acceptable spot welds could be produced. The "out-time" test was planned for a period of ten days
with three tests performed each day.

Prior to welding each day, the coupons were wire brushed and solvent wiped. The test
was discontinued after day three due to weld expulsion however, the entire exposure test was
repeated in order to verify the exposure requirements for the aluminum combination.

Batch two and three of set two were exposed to the environment and welded in order to
assess the change in the weld quality with and without adjustments to the weld schedule. On the
first day of the experiment, the materials from both of these groups were removed from the
vacuum bags, wire brushed, and exposed to the atmosphere covered only with shop packing paper
in order to simulate shop environment. Welds were made each day from each of the sets and
evaluated for quality. The test was halted after five days due to the inability to produce acceptable
welds in the exposed material.
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Resistance Spot Weld Characterization 2090-T62 to 2090-T83 Aluminum-
Lithium

The resistance spot weld schedule development was initiated for 0.090" 2090-T62 to

0.190" 2090-T83 aluminum-lithium material using a Taguchi L9 array. The optimum weld
schedule derived from the response tables is as follows: Weld Time = 5 Cycles, Weld Force =
3000 pounds, Weld Heat = 32 percent, Forge Force = 7000 pounds. Conf'u'matory tests were
conducted using the aforementioned schedule and are shown on Table S-19 and S-20.

Table S-19. Average Test Results for 0.090" 2090-T62 to 0.190" 2090-T83 AI-Li L9

Taguchi Array.

Test Nugget Diameter
I.D. _inch)

1 0.360
2 0.406
3 0.228
4 0.376
5 0.485
6 0
7 0.404
8 0.373
9 0

*Note: Sheet efficiency

Nugget Penetration
% Upper Sheet [ % Lower Sheet

54.2
61.15
33.35
44.43
70.85

0
51.4
58.33
0

17.78
30.28
12.5

23.03
41.45

0
34.20
38.83

0
is a ratio of the welded to non-welded Ftu of the skin material.

Shear

(pounds)
2661
3295
3480
2656
3447
0

2940
2700
0

Sheet Efficiency
(ratio,%)*

91.3
89.6
88.2
90.0
87.3

0
88.0

0
0

Table S-20. Average Conformity Test Results for 0.090" 2090-T62 to 0.I90" 2090-T83 A1-
Li Optimized Resistance Spot Weld Schedule.

Weld

NuggetDiameter
inch

0.4125

Cvcle Develovment

Nugget Penetration Shear

% Upper Sheet [ % Lower Sheet Lbs.
I

69.5 32.9 2759

Resistance spot weld certification tests were performed according to MIL-W-6858D class A
requirements. The test was used to certify weld schedules developed by Taguchi design of
experiments techniques for optimization of a process. The test results axe reported in Table S-21.

Table S-21. Weld Certification Test Results for 0.090" 2090-T62 to 0.190" 2090-T83 AI-Li

Optimized Resistance Spot Weld Schedule.

Nugget Diameter Nugget Penetration Shear
Coupon I.D.

inch % Upper Sheet [ % Lower Sheet Lbs.

Avera[e 0.406 62.2 ! 33.0 3155

Resistance Spot Weld Spacing Tests were performed to determine the effects of the resistance

spot weld spa,cing on weld strength and quality. The average single-spot lap shear was 3,417 lbs.,
and the 1.50 , 1.25 ', 1.00", and 0.75" spot spacing average lap shear valucs were 3134, 2876,

3206, and 3024 lbs., respectively. There was a decrease of 263 lbs. from the single-spotvalue to
the 1.50" spot spacing value. The lap shear values for spot spacing from 1.50" to 0.75" did not
reveal any conclusive trends. The spot weld nugget penetration into the 0.090" sheet showed a

slight increase in minimum penetration and a slight decrease in maximum penetration with the
closer spot weld spacing. The penetration into the 0.190" sheet showed fairly uniform minimum
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penetration, but the values for maximum penetration showed erratic behavior over the range tested.
The overall change in nugget penetration in relationship to the spot spacing was insignificant.

In conclusion, the shunting effect of close spot spacing did not degrade the integrity of the

spot weld for this material combination and spot weld schedule. This certified weld schedule could
be used to spot weld 0.090" 2090-T62 to 0.190" 2090-T83 at spot spacings of 0.75" or greater.

Sheet Efficiency

Sheet efficiency tests were performed on the 2090-T83 material in order to determine the
"knockdown" against the ultimate tensile strength after spot welding. The sheet efficiency test
results are shown in Table S-22 for 2090-T83 skin.

Table S-22. 0.190" 2090-T83 Aluminum-Lithium Skin Efficiency (or Reduction in Ultimate

Tensile Strength) After Spot Welding of 0.090" 2090-T62 Stiffeners.

Material Type Test Temperature Fm
(*F") (ksi)

2090-T83 20 65.9

* Note: Ratio taken from actual test data rather than allowable data.

Sheet Efficiency

65.9/78.3*= 84.15

The weld schedules developed for the crippling test panels (modified weld schedule
developed for thinner section based upon Taguchi response) were verified through certification
testing. The results from the tests are shown in Tables S-23.

Table S-23. Weld Schedule Certification Test for 2090 Crippling Test Panels.

Coupon ID

Average

Nugget Diameter

Cinch)
0.340

Nugget Penetration
% upper Sheet % Lower Sheet

36 - 47 33.0

Shear 2090-T62
Thic]mess

0bs.) Cinch)
2175 0.072

Cryogenic Test Data

Sheet efficiency tests were performed under cryogenic temperature on the 2090-T83
material in order to determine the reduction in ultimate tensile strength after spot welding. The
cryogenic sheet efficiency test results are shown in Table S-24 for 2090-T83 skin.

Table S-24. 0.190" 2090-T83 Aluminum-Lithium Skin Efficiency (or Reduction in Ultimate
Tensile Strength) After Spot Welding of 0.090" 2090-T62 Stiffeners.

= L;

i |i

|

= = =

Material Type Test Temperature Ftu Sheet Efficiency
(*D (_i) (%)

2090-T83 -320 76.1 76.1/95.7 = 79.53
-423 87.7 87.71103.9 = 84.4

Cryogenic lap shear tests on the 0.090" 2090'T62 joined to 0.190" 2090-T83 material

combination were performed in order to evaluate the response of the spot welds produced by the
certified weld schedule operating under cryogenic temperatures. The lap shear and weld nugget
measurements are shown in Table S-25 and Table S-26.
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Table S-25. LN 2 (-3200F) Cryogenic Resistance Spot Weld Test Results.0.090 inch 2090-

T62 to 0.190 inch 2090-T83 Aluminum-Lithium

Coupon ID NuggetDiameter Nugget Penetration Shear
(bach) % Uwer Sheet I % LowerSheet flbs_

Average 0.412 52.2 50.0 4206
Min/Max 38.9/ 66.6 33.3/ 77.8

Table S-26. LH 2 (-423°F) Cryogenic Resistance Spot Weld Test Results.0.090 inch 2090-

T62 to 0.190 inch 2090-T83 Aluminum-Lithium

Coupon ID

Average
Min / Max

Nugget Diameter
fhlch)

0.423

Nugget Penetration Shear
% Utmer Sheet I % Lower Sheet 0bs_

52.2 47.2 4299
33.3 / 66.6 33.3 / 72.2

Exposure After Cleaning

Pre-Weld Cleaning Tests were performed to determine acceptable cleaning methods for the
aluminum-lithium alloy and determine the out-time after cleaning duration in which acceptable spot
welds could be produced with the 0.090" 2090-T62 to 0.190" 2090-T83 material. Lap shear
values did not vary significantly from Day 1 to 15. The average shear value was 3,330 lbs.,
compared to the spot weld certification value of 3,154 lbs. The high and low values were 3,490
lbs. and 3,128 Ibs., respectively, giving a range of 362 Ibs. These high and low values varied

from -6% to +5% of the 3,330 Ibs. average value. Nugget diameters did not vary significantly
from Day 1 to 15. The average nugget diameter was 0.423", compared to the spot weld
certification value of 0.406". The high and low values were 0.431 and 0.407", respectively,
giving a range of 0.024". These high and low values varied from -4% to +2% of the 0.406"
average value. In conclusion, the 0.090" 2090-T62 to 0.190" 2090-T83 weld material

combination can be successfully resistance spot welded per MIL-W-6858D requirements up to
fifteen days after chemical cleaning with only paper (blue-line) packaging.

3Y_ Ja_._Rtaa 

The objective of this task was to determine the feasibility of repairing defective resistance spot
welds in the 0.090" 2090-T62 to 0.190" 2090-T83 aluminum-lithium alloy combination.
Defective spot welds were intentionally produced with the aluminum-lithium material combination

from variations to the original certified spot weld schedule. Three groups of defective welds were
made: diffusion welds (a reduction in 11 percentage points of heat from the original certified
schedule), undersized nuggets (a reduction in 8 percentage points of heat from the original certified
schedule), and nuggets with cracks or voids (a reduction in 2 percentage points of heat and the
elimination of the forge force from the original certified schedule).

Fifteen specimens were spot welded per defect group, and sent to radiographic inspection for
verification of the defect. The coupons were re-welded, using resistance spot weld repair
schedules, and re-examined by radiographic inspection to verify correction of the defect.

The examination of the "diffusion weld" specimens resulted in the removal of the defect by the
repair process. The average shear strength of the diffusion weld was 2203 pounds and the average
shear strength of the repair weld was 3344 pounds. Examination of the "undersized spot weld"
specimens resulted in the removal of the defect by the repair process. The average shear strength
of the undersized weld was 2721 pounds and the average shear strength of the repair weld was
3441 pounds. Examination of specimens with "cracks and voids in the weld" resulted in the
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removal of the defect by the repair process. The average shear strength of the cracks and voids in
the weld was 3108 pounds and the average shear strength of the repair weld was 3639 pounds.

It was determined that the repair weld process can be successfully used for all of the defect
types examined during this program with the aluminum-lithium materials. However, the repairs

were accomplished with additional heat placed into the system, which is anticipated to further
decrease the skin efficiency. Any quantifiable reduction in skin efficiency is unknown and would

depend upon the total heat input.

FUSION WELD DEVELOPMENT:

Fusion welding is utilized for both the vertical panel to panel joints, and the barrel to major

flame joints. In order to fabricate the doubler reinforced weld joint, fusion weld parameters had to
be developed for both the 0.155" 2219-T81 aluminum and 0.155" 2090-T83 aluminum-lithium
materials, and the theory of the joint explored through mechanical testing of coupons. Variable

Polarity Plasma Arc Cv'PPA) fusion weld studies were initiated with the aforementioned material
systems using a 300 Amp Hobart VPPA welder. A helium purge box was adapted to the VPPA
welder so that all of the welding would be controlled under a shielded environment.

2219-T81 Aluminum Fusion Weld Development

The variable polarity plasma arc (VPPA) fusion weld development process was initiated
and weld certification panels were welded, radiographic inspected and sectioned into tensile test
and macro cross-section specimens. The preliminary results of tensile testing on 0.190" and
0.155" thick 2219-T81 aluminum sheet are shown in Table S-27 and S-28.

Table S-27. Tensile Strength of VPPA Fusion Welded 0.190" 2219-T81

Im

Coupon
I.D.

1
2
3
4
5
6
7
8
9

Width

On)
0.962
0.960
0.966
0.936
0.921
0.949
0.930
0.946
0.986

Thickness

(i,,)
0.192
0.191
0.190
0.191
0.191
0.189
0.188
0.187
0.187

#,tea

(_q. in)
0.185
0.183
0.184
0.179
0.176
0.179
0.174
0.164
0.184

Load

7565
7680
7522
7010
6909
7093
6867
6818
7082

Average

Fill

(psi)
40.957
41.907
40.983
39.232
39.276
39.567
39.,102
38,644
38,429

39,822

The fusion weld specimens were machined into a tensile coupon (dogbone) configuration
and chemically cleaned (doubler and outer skin material) prior to resistance spot welding of a 7475-
T62 AI doubler onto the 2219-T81 A1 fusion weld specimen. The completed uniaxial specimens
were strain gauged and tested at ambient temperature (refer to Table S-29).

All of the test specimens failed in the 2219-T81 skin along the first row of spot welds near
the edge of the doubler. There were not any indications of spot weld faiha'e during testing, or
permanent deformation in the fusion weld. Weld efficiencies for the test specimens were lower
than predicted due to the close doubler inter-spot spacing (0.075 inch) used during welding.

The results of the doubler reinforced fusion weld testing showed that the in-line

configuration provided the best reinforcement of the fusion weld. However, neither reinforcement
joint configuration (in-line or staggered) were optimized. As a result of the tests and evaluations of

xl



the joint at GeneralDynamicsand Rockwell the inter-spotweld spacingwas increasedandthe
center-lineoffset of the reinforce joint was readjusted.

Table S-28. Tensile Strength of VPPA Fusion Welded 0.155" 2219-T81

Coupon
I.D.

AI
B1
C1

A2
B2
C2

A3
B3
C3

Width

0.962
1.027
0.992

0.997
0.989
1.020

0.996
1.010

0.9665

i

Thickness

(inl
0.145
0.146
0.147

0.132
0.130
0.135

0.142
0.141
0.142

Area'

(sq.in)
0.139
0.150
0.146

0.129
0.129
0.138

0.141
0.142
0.137

Load

(Ibs)
5850
6113
5953

Average

5031
4794
5163

Average

5310
5521
5244

Average

Ftu

(psi)
41,938
40,769
40,823

39,011
37,287
37,494
37.930

37,544
38.768
38,210

38,174

Table S-29. Tensile Response of Fusion Doubler Reinforce Testing for 2219-T81 AI with
7475-T62 AI Doubler.

J

m

u

m

il

hi

Ii

Specimen Spot Weld Width Thickness Area Ultimata Load Fm Weld Efficiency
113 Pattern (ineh_ Cmch_ (__. irL_ (_t_tmds_ (KsD (oercertt_

1-F4D1 In-Line 4.84 0.155 0.750 36712 48.9 77.7
1-F3D2 In-Line 4.84 0.155 0.750 41151 54.9 87.0
2-F1D3 Staggered 4.02 0.i55 0.620 34720 55.7 88.5

2-F2D4 Staggered 4.02 0,.155 0.623 34727 , 55.7 88.5

2090-T83 Aluminum-Lithium Fusion Weld Development

Parameter development on VPPA welding of the 0.155" 2090-T83 material was

performed. Radiographic inspection of the single pass welds revealed high quality fusion joints
with full penetration, however, the visual appearance of the welds showed small amounts of

undercut along the weld length. The initial goal of developing a single pass VPPA weld with full
penetration (Keyhole) without a 'cosmetic' cover pass to fill undercut was desirable since panel
distortion appeared to be most noticeable after the cover pass. However, the single pass weld
schedule could not be enhanced in order to remove the under-cut, and the program goal was
modified to include the cover-pass.

The preliminary test panel, 0.155" 2090-T83 A1-Li, was welded and radiographically
inspected. The panel passed the acceptance criteria for fusion welding of aluminum and was
processed for tensile and metallographic analysis. Data provided for the development work is
shown in Table S-30 and $-31.

Table S-30, Single Pass Fusion Weld Development of 0.155:2090-T83 AI-Li.

m
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Coupon I.D,
I
2
3
4

5

Average

Test Area (sq. in.)
0.141
0.144

0.141
0.146
0.145

0.143

Load (pounds)
5871
5269
5766
5313
5276
5499

Fm g_)
41.562
36.626
41.010
36,463
36,426

38,417

Elongation(%)
5
5
4
5
5
5
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kJ Table S-31. Tensile Results of 0.155" 2090.T83 Two Pass VPPAW

Coupon
LD.#
1
2
3
4

Width
inch

0.954
1.009
1.005
1.015

i

Thickness TestArea
inch so, inch
0.156 0.149
0.157 0.158
0.156 0.157
0.156 0.158

Average 0.156

Ftu
vsi

41169
41752
41759

39832

41128

Elongation
%
5
5
4

5

S

TASK 4: PANEL FABRICATION AND TEST

CRIPPLING PANEL FABRICATION;

The crippling panel designs were based upon the analysis of the three selected stiffener
configurations. The designs were analyzed and optimized for fabrication and structural testing.

The crippling specimens were superplastic formed, heat treated, trimmed, inspected, spot welded
to outer skin material and assembled into the test fLxtures. Testing was preformed on the three

configurations and compared with predicted behavior of the stiffened structures.

The part blanks of each material were coated with releasing agent, hot loaded into the SPF
press, formed, hot unloaded and allowed to slow air cool. The panels were formed, heat treated,
trimmed to a net shape confgurafion and inspected. The stiffener and skin combination was
cleaned, internal strain gauges were applied, and the panel was welded to the skin. The panels
were examined for weld integrity by radiographic analysis and prepared for structural testing. The
welded panels were trimmed, assembled into the test fixture, and tested. Each specimen was
mounted and aligned in the test machine for compression loading as shown in Figure S-7.
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Figure S-7. Crippling Stiffener Structural Test Set-up.
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The initial fully straingaugedcrippling panel testwasperformedon a 7475-T62/2219-TS1
steppedhat configuration. Buckling initiated at 77,000 lbs for the steppedhat stiffener but
continuedto carry loadup to 84,000Lb. Thespotweldsdid not fail during the testingfor either
thetestset-uppanelor theinitial steppedhatpanel.

Thepredictedultimateuniaxial testloadsfor crippling in the hats are re-iterated for comparison
purposes in the following table:

Predicted Ultimate Uniaxial Test Panel Loads

Aluminum

7475-T62 to 2219-T81 AI

Beaded Flat or Crowed 7475-T62 to 2219-T81 A1

Aluminum-Lithium

[ Stepped Hat ] 2090-T62 to 2090-T83 A1-Li [I Beaded Flat or Curved Cap ., 2090-T62 to 2090-T83 A1-Li

76,800 Lb.

60,000 Lb.

68,000 Lb. [68,000 Lb.

The test results of the 7475-T62/'2219-T81 and 2090-T62/2090-T83 aluminum and aluminum-
lithium panels are summarized in Table $-32 and S-33.

Table S-32.

7:

Panel and I.D.

Test Panel 1 (47-3-7-23)
Test Panel 2 (50-3-7-26)

Test Panel 3 (43-3-7-3)

Test Panel 4 (1-1-7-7)
Test Panel 5 (3-1-7-16)
Test Panel 6 (7-1-7-20)
Test Panel 7 (26-2-7-62)

Test Panel 8 (27-2-7-63)

Test Panel 9 I30-2-7-36t

Crippling Panel Test Results for 7475-T6212219-Tgl.

Panel Type

Stepped Hat

Stepped Hat

Stepped Hat

Beaded Web (CC)

Beaded Web (CC')

Beaded Web (CC)

Beaded Web (FC)

Beaded Web (FC)

Be_.d Web0:C3

Ultimate Coml_res_ve Load

a.._)
84.000

79,400
83,400

66,500

67,900

66,300

63,000

67,500

67r000

Col'nxnfflat$

Cracked Spot Welds 1, 2, 14
Cracked Spot Weld 2

Cracked Spot Weld 19

Popped Spot Welds 8. 9. 10.

14. 15, 16

Popped Spot Welds 19. 20. 21
Cracked Spot Welds 2. 3, 13

Cracked Spot Welds 1.2

Table S-33. Crippling Panel Test Results for 2090-T62/2090-T83.

i

HI

I

u

II

|
IR

i

il

II

i

i
Test Panel

14

15

16

18

19

20

21

23

24

I.D.

(17-3-2-15)
(126-3-2-91)

(60-3-2-42)

(35-2-2-51)

(39-2-2-55)

(70-2-2-58)

(12-1-2-10)

(87-1-2-78)

(91-1-2-82)

Panel Type

Stepped Hat
Stepped Hat
Stepped Hat

Beaded Web (PC)

Beaded Web if:C)

Beaded Web if:C)

Beaded Web (CC)

Beaded Web (CC)

B_ Web (cc)

Ultima_ Com_essiveLoad
(I._)

70,300
74,600

73,800

65,000
65,000
65.200

65.800

67,200

63,770
[

The test load values were for the 7475-T62 to 2219-T81 aluminum and the 2090-T62 to 2090-

T83 aluminum-lithium stiffener and skin combination were slightly higher than the predicted load

values. The higher results have been attributed to conservative estimates for spot weld strength
which translated into reductions in outer skin and stiffener allowables.

The basic failure mode for each stiffener was face wrinkling of the skin, as would be expected

with a heavy skin-light stiffener combination. It was noted that very soon after the skin wrinkling
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for the stepped hat, the web buckled because of the change in skin support condition.
of a typical stepped hat is shown in Figures S-8 and S-9.

Results and Conclusion

The failure

The comparisons of the PASCO model axial stiffness and that obtained through the crippling
test specimen values are summarized in Table S-34. The column of the E(tbar)X specimen width
was included as an additional check of the values obtained. The PASCO models presented a

satisfactory axial stiffness simulation of the crippling test specimens.

Table S-34. Comparison Summary of the Test Panel Versus Predicted Axial Stiffness (EA)
of the Crippling Specimens.

E

! ------

4.

i __

IU

Panel Stiffener Material A11

No. Type (Stiff/SEn) Model
(xE6)

#1 SH 7475/2219 2.618
#8 BCC 7475/2219 2.269
#12 BFC 7475/2219 2.269
#15 SH 2090/2090 2.90
#23 BCC 2090/2090 2.28
#19 BFC 2090/2090 2.28

PASCO Test Stiffener Approximate Ratio

EA EA tbar Etbar x width Test to

(xE6) (xE6"} (in) (Lb x E6 = EA) Model
15.7 15.2 0.256 15.4* 0.97

13.62 12.8 N/A N/A 0.94
13.62 13,4 N/A N/A 0.98
17.4 16.7 0.252 17.1"* 0.96

13.68 12.9 N/A N/A 0.94

13.68 13.7 N/A N/A 1.0

* Effective Modulus, Assumed = 10 Msi, ** Effective Modulus, Assumed = 11.3 Msi

tbar = Effective Stiffener to skin thickness
SH = Stepped Hat, BCC = Beaded Curved Cap, BFC = Beaded Flat Cap
Test EA = P/SFL = P/e ave. strain 8 = shortening of specimen (in.), L = Length of Specimen (in.)
PASCO EA = (A11 x Width) A11 = Stiffness per inch of width, W = Specimen Width (6 in.)

N/A = Not applicable for beaded web panel the PASCO tbar for the beaded web includes the webs, however, the

beaded web contribution to the axial load capability of the stiffener is minimal.

Crinnlin_ Panel Test Conclusions

The following summary conclusions are based on the crippling panel test results:
1. The correlation between test and predicted loads was satisfactory.
2. The mode of initial buckling failure, face wrinkling (similar to column buckling of a beam

on an elastic foundation), was expected, since this is typical of a heavy skin-light stiffener
combination.

Spotweld strength was sufficient for this application; e.g., no unzipping was observed after

the face wri_ng failures of the specimens.
Since the tbar for the beaded hat and stepped hat are quite close, the stepped hat offers

about 10-14% more efficiency on the basis of initial buckling for the same material.

5. Comparing:_idafi0 of tlae in ftial bucld_g to material density (Fbu/P) for 2090 and 7475

stepped hats indicates that the 2090 material is slightly more efficient for this application.
6. Since the initial buckling and yield strength were quite close, all the designs appeared to

produce a very good optimum structure.
7. All designs met the required design criterion of 51,000 lbs (8474 lbs/in.) uniaxial
.... compression loading for local buckling.

8. The SPF beaded hat could be made a more structurally efficient configuration if the webs
:were chem-milled to a lower thickness; however, this would increase the cost of

fabrication. ....

9. An improved theoretical thinning profile would be useful in considering any other possible
variations of the SPF hat-stiffener configuration.

10. The stepped-hat configuration will be utilized as the column buckling test panel design to
maximize stiffener load carrying ability.
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Figure S-8. Typical Failure of Beaded Web Stiffener.
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Figure S-9. Typical Failure of Stepped Hat Stiffener.
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INTEGRALLY STIFFENED PANEL DEMONSTRATION ARTICLE"

The integrally stiffened panel (shown in Figure S-10) was fabricated as a demonstration

article. The panel was fabricated as a representation of the type of configuration that could be
fabricated for an integral SPF stiffener configuration without optimization of the stiffener or node

configuration. Integrally stiffened structure (vertical stiffeners and hoop-wise supports integrally
formed into the panel) would utilize the beaded web stiffener concept to minimize load transfer
through the side walls of the stiffener which could lead to large moments at the point of intersection
in the panel. The integrally stiffened panel was not addressed during the panel test and evaluation
portion of this program, however, the concept appears to be viable (due to the performance of the
structural test specimens and through evaluation of the stress analysis efforts under this program)
for vertical and hoop-wise strengthening of built-up cryogenic tank structure.

COLUMN BUCKLING PANEL FABRICATION;

At the completion of the crippling panel tests, the stepped hat stiffener configuration was
chosen for continued development based on its load carrying capability. The panel configuration
was chosen based upon the desired length of the panel (column of at least 60 inches) and limited by
the width of available material (48" minus sealing area). The resulting panel design maintained the
inter-stiffener and inter-spot spacing optimized for the crippling stiffener panels.

The tooling concept for the universal die chamber and insert combination used a base-plate
for assured release of the gas pressure during forming with separate stiffener configurations
indexed onto the gas plate with locator pins. The stiffeners were machined separately out of bar

stock in order to minimize material scrap and keep handling of the tooling configuration simple.
The gas pressure plate was chamfered along the bottom periphery and grooved to allow for gas
flow away from the final part to the gas outlets.

The column buckling test panels were formed (refer to Figure S-11), solution heat treated,
water quenched, straightened, artificially aged, trimmed, chemically cleaned, and strain gauged
prior to shipment of the panels to General Dynamics for final assembly. After completion of the
welding process, the panels were inspected and final machined to net dimensions. The panels
were shipped directly to NASA LaRC for final assembly and testing.

DOUBLER-REINFORCED_FUSION WELD PANEL;

The final panel configuration examined during this program was the vertical fusion weld or
panel-to-panel joint. The joints are fusion butt-welded together and reinforced with a spot-welded
doubler over the weld. This doubler-reinforced concept eliminates the need for machined weld
lands (commonly used for launch vehicle pressure vessels at an increased fabrication cost, and
weight penalty to the structure) to reinforce the joint by utilizing the doubler as a major load
carrying member for the fusion weld. The development of the joint was based upon the fusion
weld and resistance spot weld data generated during task 3 of this program. Specific doubler
testing was conducted under task 3 that provided a greater understanding of the behavior of the
doubler over the Variable Polarity Plasma Arc (VPPA) fusion weld for load transfer. The test data

was then utilized with finite element modeling techniques to predict the behavior of the fusion weld
joint during bi-axial (axial and hoop) loading conditions. _,

The fusion Weldtest panels were fabricated from two skins (machined from 0.190" to 0.155"
thickness) fusion welded together with a doubler attached to the outer skin over the fusion weld

and two crippling sffffeners attached to the skin material. Prior to assembly of the panels, weld
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verification testing was pei'formed on the fusion weld. Welding of the 2219-T81 and 2090-T83

fusion weld panels were completed and inspected (visually and radiographically).

The fusion welded panels were accepted after weld verification testing, and machined to a net
shape condition. The reinforcement doubler was resistance spot welded onto panel over the
shaved weld bead (refer to Figure S-12). The SPF stepped hat stiffeners were subsequently
located and welded onto the test panel and the entire panels was inspected. The finished test panels

were machined to final contour (flat and parallel) and inspected for dimensional integrity. Final
assembly of the fusion weld panels into the test fixture was initiated at General Dynarmcs. The
doubler reinforced fusion weld panels were shipped to NASA Langley for completion of assembly

and f'mal testing.

TASK 5: NDE & QUALITY ASSURANCE

The/fiDE and quality assurance of SPF structure and resistance spot weld joints was evaluated
and enhanced wherever possible during the program. Existing process specifications for
aluminum at Rockwell were modified to include 2090 and 8090 A1-Li. The modifications to the

specification were based upon uniaxial test data and producibility analysis (based upon the
predictive modeling of the material prior to forming) carded out under this program. The main
areas that were critical for understanding the materials were the strain rate and forming temperature
that result in the lowest flow stress (with the highest uniform elongation) and the cavitation
behavior of each material. The evaluation of the superplastic material variables resulted in selection
of a duplex strain rate for both the 2090 and 8090 materials (2E-3 for strains up to 0.5 after which
the strain rate is decreased to 2E-4 for the remainder of the forming process), thermal control of

950 + 10°F with a maximum back pressure of 600 psi (minimum of 200 psi).

The welding NDE and quality control issues were addressed during resistance spot welding
development. The evaluation of weld quality was based upon monitoring of the process
parameters for resistance spot welding (forge force, heat, current, etc.) that were recorded during
each welding operation and evaluating the parameters for an acceptable versus unacceptable weld.
The out-of-tolerance control areas for the welding process were determined through evaluations of
information generated during the Taguchi design of experiment tests and the heat sensitivity

testing. The acceptable limits for each variable in the welding process were identified and used as
boundaries (upper and lower limits) for the fabrication of acceptable resistance spot welds
(however, radiographic inspection, lap shear testing, and metallographic examination of welds was
performed during this program in order to fully characterize the process). The next step for
complete NDE of the resistance spot weld process would be to include automatic feed-back control
(or in-process control) for the welding equipment that would control the settings of the weld
equipment so that out-of-tolerance weld_ could not be made. However, investigation of automatic
feedback control for resistance spot welding was out of the scope of this program.

TASK 6: LIFE CYCLE COST ANALYSIS

The "Low Cost, SPF Aiumlrium=_r_'_ogenqc Tank Structures for ALS and Future
Hypersonic Vehicles" examined the application of superplastic formed (SPF) structure as a cost
effective means to fabricate a cryogenic tank. The goal of the life cycle cost (LCC) study was to
evaluate the cost savings or penalty associated with utilizing a built-up structures approach versus
integrally machined structure for the Hydrogen tank. The built-up concept uses stiffeners,
specifically, superplastically formed stiffener panels, brake formed hat sections, or 'T' extrusions,
joined to a skin panel. The flow of the LCC study included evaluation of three built-up concepts
represented by two different material systems, and a baseline concept, integral machining.
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The results of the analysis showed the cost to fabricate one vehicles cryogenic tanks (T1
dollars, two tanks per vehicle), 307 vehicles (T307 dollars, two tanks per vehicle), and a projected
build of 1000 vehicles (T1000, two tanks per vehicle). A summary of the costs for the tanks are
shown as Table S-35. The integrally machined configuration (integrally machined 2219 A1) is the
most costly system at T1, and at T307 (or the 307th vehicle built) however at T1000, the disparity

in purchase price between built-up configurations and the integrally machined concept begins to
become less apparent.

Table S-35. Summary of Cost Trade Analysis.

Fabrication Method
Material

Built-Up Structures
Superplastic Forming A1-Li

Superplasdc Forming AI

Brake Forming AI-Li
Brake Forming A1

Extrusion ALIA
Extrusion A1

Integrally Machined AI

T1
Dollars

3,563.000

3,039,000

3,831,000

3,535,000

4,163,000
3.782.000

4,225,000

T307
Dollars

2,922,100
2,610,300

3.019,200

2.670,200

3,231.500

2,763,100

3.610,000

T1000
Dollars

2.603,200

2,321,600

2.716,300

2.420.400

2.895,000
2,498,900

2,649r600

In the coarse of the program, it was difficult to ascertain the value of weight to the vehicle
versus amount of payload that would have to be sacrificed for each pound of structural weight.
However, if the value were similar to a Shuttle type vehicle in that each pound saved for the vehicle
allowed for increase to the payload manifest, each pound could be worth up to $300. In that case
the modified purchase price, due to weight savings or penalty, (refer to Table S-36) is shown in
Table S-37 for each configuration (based off of the integrally machined concept). Using the

$300/lb ratio, the SPF A1-Li concepts provide for approximately 40 to 48% cost savings over the
integrally machined concept, while the SPF A1 concept provided a 17 to 26% cost savings. The
cost savings or penalties are shown as Table S-38. Since this is an expendable vehicle, the goal of
minimization of fabrication and material cost is of the utmost importance. However, weight
savings should be kept in the picture as it relates to potential payload into space.

z--

_L

In summary, the built-up approach can provide significant cost savings over conventionally
machined cryogenic tank structure. This analysis was performed with standard manufacturing
methods and realistic data inputs. It is believed that the aluminum-lithium family of materials can

provide additional benefits to an NLS type vehicle by reducing, overall structural weight.
Additional cost savings can be realized with utilization of alternauve fabrication methods for
cryogenic tank structure.

Table S-36. Summary of Weight Analysis.

FABRICATION METHOD - MATERIAL

Built-Up Structures

Superplastic Forming AI-Li
Superplastic Forming AI

Brake Forming AI-Li
Brake Forming AI

Extrusion AI-Li

Extrusion A1

Inte[rall_ Machined AI

STRUCTURAL WEIGHT (LBS)

28,836
32.505

31,306

35.576

31,627

35,970

32.356
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Table S-37.
Cost Savings or Penalties for Cryogenic Tank Structures Versus the Integrally

Machined Concept.

Fabrication Method -
Material

Built-Up Structures
Superplasdc Forming AI-Li

Superpl_tic Forming AI

Brake Forming A]-IA
Brake Forming A1

Extrusion A1-Li
Exwasion A1

Integrall_ Machined A!

T1

Savings

40.7 %
17.5 %

6.6%
(15.2%)

T307

Savings

48.3 %
26.5 %

16.5 %
(6.6 %)

0

ii

T1000

Savings

41.6%
10.7%

1%
(35.7 %)

0

Table S-38. Predicted LCC Behavior.

Fabrication Method
Material

Built-Up Structures
Superplastic Forming AI-Li

StrperpIastic Forming A1

Brake FormingA1-Li
Brake Forming AI

Extrusion A1-Li
Extrusion AI

Inte[rall 7 Machined A!

TI
Dollars

2.507,000
3.486,000

3,516,000
4,501,000

3,944,300
4,866,200

T307
Dollars

1,866,100
2,655,000

2,704,200
3,636,200

3,012,800
3,847,300

4,225,000 3.610,000

TI000
Dollars

1,547,200
2,366,300

2,401,300
3,386,400

2,676,300
3,583,100

2.649.600

TASK 7: AUTOMATION AND SCALE-UP

Investigations into automation of the fabrication process for NLS cryogenic tanks were
limited to planning the type of facilities that could be most cost-effective for the nation. An

automated fabrication cell for superplastic forming. The automated fabrication well would provide
for automatic loading of a part blank, forming, part removal and quenching (air quench if
aluminum-lithium materials are to be utilized). The parts would be loaded immediately after
forming into a cleaning and heat treatment carrousel after which time it would be trimmed and

welded onto the outer skins. The welded panels would then be joined into barrel sections and
finally into cryogenic tank structure. The preliminary plan would utilize existing facilities where
available (or modify existing facilities if possible) in order to minimize any re-facilitization costs.
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1.0 INTRODUCTION
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The work reported herein covers the design, analysis, and structural testing of the Type I
hat-stiffened crippling panels for the NASA contract NAS 1-18590 Task Order 5, "Low Cost SPF
Aluminum Cryogenic Tank Concepts for ALS", C. E. Anton, Program Manager.

The crippling specimens (Type 1 panels) utilized during this program were designed and
structurally tested to determine a differentiation between the three efficient Superplastically Formed
(SPF) designs. The basis for this examination into the use of aluminum (A1) or aluminum-lithium
(Al-Li) stiffener concepts welded onto outer skin material was to reduce the life cycle cost of
cryogenic tank structure for the Advance Launch System (ALS) family of vehicles.

Past production work has shown that cryogenic tank structure for the Shuttle booster
rockets and the Titan system have very high life cycle costs for the fuel tank structure. The tanks
are machined stiffener-skin combination that are subsequently formed into the required contour
after machining. The material scrap rate for these configurations are usually high, and the loss of a
tank panel due to forming or heat treatment problems is very costly. The idea of reducing the
amount of scrap material and scrapped structural members has prompted the introduction of built-
up structure for cryogenic tanks to be explored on the ALS program. A built-up structure approach
that has shown improvements in llfe cycle cost over the conventional built-up approach is the use
of SPF stiffened panels (reducing the overall part count and weight for the tank) resistance spot
welded (RSW) to outer tank skin material. The stiffeners provide for general stability of the tank,
while the skin material provides hoop direction continuity for the loads.

The three Type 1 crippling SPF stiffener concepts were designed by Rockwell International
based upon past work performed by NASA-Langley on titanium stiffener concepts. The General
Dynamics ALS loading requirements and RSW allowables were used in conjunction with past
experience at Rockwell International with SPF of Al and Al-Li materials during the design of the
stiffener components. The stiffener concepts were designed, structurally analyzed, fabricated, and
tested during the initial part of this program (NAS 1-18590 Task 5). The pre- and post-test analysis
covered in this technical file document (TFD) along with the methodology utilized for the design
analysis, and fabrication methodology of the Type 1 panels.

The objective of this program was to design and fabricate SPF stiffened panels that could be used
for fabrication of low cost cryogenic tank structure for the ALS family of vehicles. The two-fold
objectives of the crippling panel design and testing was to validate the structural efficiency of SPF
stiffeners versus conventional stiffened configurations, and to differentiate between the structural
performance of the three optimized SPF stiffener designs and between the two material systems
(7475-T62 A1 stiffeners joined to 2219-T81 A1 skins, and 2090-T62 Al-Li stiffeners joined to
2090-T83 outer skins) used for the study.
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_= - 2.0 OBJECTIVES

Three superplastic formed (SPF) hat stiffener concepts were designed by Rockwell to
utilize the SPF process in combination with resistance spotwelding (RSW) for use as non-pressure
stabilized cryogenic tank structure. The purpose of the optimized stiffener-to-skin concepts was to
reduce the manufacturing and life cycle cost of large cryogenic LH2 tank designs associated with
ALS.
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3.0 PROGRAM PLAN

iii

The intent of the program is to investigate the application of A1 and AI-Li superplastically
formed structure (SPF) as a low cost manufacturing method for expendable launch vehicle

structure. The tasks involved in this investigation include:

Task 1 - Structural Concept Selection
This task includes the development and optimization of structurally efficient and cost

effective SPF stiffener design concepts, utilizing ALS prime contractor loading.

Task 2 - Superplastic Forming Study
This task develops the SPF parameters for fabrication of the compression panels,

develops post-SPF thermal processing parameters, and generates material design data.

Task 3 - Joining Studies
This task develops resistance welding parameters for the material combinations selected

during task 1 and 2, and examines the application of adhesive bonding in conjunction with the
SPF stiffener panels.

Task 4 - Compression Panel Fabrication,Test, and Evaluation
This task includes the fabrication of four compression panel configurations (single

stiffener, multiple stiffener, large-scale stiffened panel, and large-scale stiffened panel to panel
joining and structural test and evaluation of the first three panel types.

Task 5 - NDE & Quality Assurance
This task will be conducted during the entire program and will result in a plan to fabricate

quality SPF structure and resistance weldments.

Task 6 - Life Cycle Cost Estimating
This task will assess the cost benefits that SPF will provide to fabrication of cryogenic tank

stiffened panels.

Task 7 - Automation and Scale-up
This task will develop a manufacturing plan to fabricate full-scale tank structure.

Task 8 - Reporting
This task assured documentation and Iransmission of data developed during this program.
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4.0 TECHNICAL DISCUSSION

4.1 DESIGN AND ANALYSIS
4.1.1 ALS CONFIGURATION

The ALS vehicle loads supplied to Rockwell International were derived from the ALS-L

vehicle configuration (refer to Figure 1) for a variety of loading conditions. These loading

conditions consisted of ground handling, ground winds, maximnm flight winds (Max Alpha-Q /

Max Beta-Q), and booster burn out. The loads imposed by these conditions are critical for

different areas of the vehicle depending upon the location along the vehicle length. The forward

end of the vehicle was sized by flight winds and the aft end of the vehicle was sized by booster

burn out and ground wind loads.

The ALS vehicles have been designed for relatively high launch rates and high launch

availability as compared to previous launch vehicles. The vehicle is intended to remain on the

launch pad through quite severe weather conditions, and launch without a launch or umbilical

tower. The latter constraints require the vehicle to react the high ground wind loads while

cantilevered from the aft end producing a very high bending moment near the aft end of the vehicle.

w

iu

EJ
7, -Lz

The increased launch availability of the ALS, requires the vehicle to fly through severe

weather conditions, and high winds while aloft. This produces the maximum bending moments in

the forward and central regions of the vehicle during Max Alpha-Q and Max Beta-Q flight periods.

Representative load levels in the LH2 tank cylindrical section are depicted geometrically in Figures

2, 3, and 4. Figures 3 and 4 show where the loads, due to side winds at maximum Beta-Q can be

interpolated with a plus or minus Mz component in the axial load (Nx) calculations.

The highest bending in the far aft end of the vehicle occurs just prior to booster burn out.

This large moment is caused by the booster engine thrust pushing eccentrically on the core vehicle.

At this time, most of the booster thrust is transferred to the core since the booster is nearly empty

and provides very little inertia reaction against the thrust load. A summary of the design loads and

additional design parameters for this program are summarized in Table 1.

4.1.2 MATERIAL DESIGN AT J 4DWABT FS

The material properties used during design of the crippling panel SPF stiffener concepts,

and the sizing of the outer tank skins are summarized in Tables 2 and 3.

4-1
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Figure 1. ALS-L Launch Vehicle Configuration.
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Table 1. Design Load Conditions 1
g

. Nx = -4237 lb/in. 2. Nx

Ny = 0 lb/in. Ny
Nxy = 1028 Ib/in. Nxy

° Nx = +8474 lbfm. 4. Nx

Ny = 0 Ib/'m. Ny
Nxy -- 416 lb/in. Nxy

5. Ultimate Tank Pressure = 56 psi

6. Temperature = Ambient

On the basis of initial PASCO runs, Conditions 2, 4, & 5 sized the parts.

= -8474 lbfm.
= 0 lbfm.
= 416 Ibfm.

= -7607 lb/'m.
= +7002 Ibfm.
= -1191bfm.

Material

Basis =_

Prot)ertv !_
Ftu, Ksi L

45 °

LT

Fty, Ksi L
45 °

LT

Fcy, Ksi L
45 °

LT .
Fsu, Ksi
Fbru, Ksi

e/D--- 1.5
e/D = 2.0

E, Msi L
450

LT .
Ec, Msi L

4_

LT

i.t
G, Msi

13, lb/cu in.

Table 2. Room Temperature Material Properties 2

2090-T83

A1-Li

$

75
65

73
70
57

66
63
60

71
37

100
126
11.5

11

11,5
11.8
11.4

11.8
0.33
4.4

0.093

2219-T81

A1-Li

B

63

63
48

47
49

50
36

78

9_
10.5

10.8

0.33
4.0

0.102

7475-T62

AI. Post-SPF

$

74

7_
65

64.
64

68
45

97

110
10

10.5

0.33

3.8

0.101

2090-T62

A1-Li. Post-SPF

Average

58

60
48

5O
47

45
29

75

9_,
11.3
10.9

11.3
11.7

0.34
4.4

0.093

8090-T6

AI-Li

$

64

;57
45

4_
50

47
27

68

77
11.5

11.7

0.33
4.4

0.092
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Table 3.

pro_rrv

Fro. Ksi

F_, K_i

Fsu. Ksi

E. Msi

G, Msi

_t

p, lb/cu in

Average

7475-T62

SPF Stiffener

74

64

45

10

3.8
0.33

0.101

Allowables Utilized

2219-'1"81

Outer Skin

63

_0

36

10.5

4

Material for PASCO

2090-T62

SPF Stiffener

0.33

0.102

58

45

29

11.3

4,4

0.34

0.093

Analysis. 3

2090-T83

Outer Skin

65

60

37

11.5

4,4

0.33

0.093
|

4.1.3 DESIGN CRITERIA

The design loads were generated from the ALS "L" configuration on the General Dynamics

vehicle, and were represented (refer to Table 1) of a down-scale of the launch requirements for the

vehicle. Specifically the reductions were in the ground wind requirements for the vehicle. The

sizing of the outer skin thickness was based upon:

tskin rain. = Pult x R/Ftu

Pult = (40 psi x 1.25) + (4.3 psi x 1.4) - 50 + 6 = 56 psi
R = Outer radius of the tank

!

k,.

: z

The preliminary spot weld spacing for the stiffened panels was determined as follows:

Per = Critical Column Buckling Load = (g'2"EI)/L2

I.,2 = (rr2EI)/Pcr L -- Length between spot weld

o= _x)/t
Nx = 8474 Lb/'m, t = 0.039 inch (required per the optimization analysis)

Assume that Per = Ocr x A = (8474/0.25) x .7 x 0.039

L 2 = (9.87 x 11.5 x 106 x (1/12) x .7 x (0.039)3)/925 = 393/925 = 0.4249

L = 0.65 inch

4.1.4 BI31LT-UP CRYOGENIC TANK DESIGN

The design and analysis of the built-up cryogenic tank structure was developed with the

merger of SPF technology, resistance spotwelding parameters, and the LH 2 cryogenic tank

structural loads for the ALS-L vehicle configuration. The design was also developed in keeping

4-7



with theoverall ALS program objective of maintaining low life cycle costs. During the design and

analysis phase, it became apparent that in a number of cases, that specific requirements of one

technology diametrically opposed those required for the second technology or even within its own

technology. An example of particularly severe opposing constraints observed with the use of

resistance spot welding are illustrated with the example below and in Figure 5.

• The LH 2 tank is under internal pressure which drives the resistance inter-spotweld spacing

(spotweld pitch) towards a maximum in order to minimize the degradation of the skin's
parent metal strength (refer to Figure 6).

• Conversely, the axial loading (Nx) on the tank drives the inter-spotweld spacing towards a
minimum to prevent inter-spot crippling.

• In addition, the spotweld process requires maximum inter-spot spacing to prevent electrode
shunting during the weld operation.

The technology driven requirements when coupled with the high loading conditions typical

of the ALS vehicles created some unique design chatlenges for optimizing the performance of light

weight structure. In addition, general missile tank structural requirements dictate that stiffener

failures (buckling) in the tank be local in nature rather than catastrophic, and that reduction in

parent metal strength in the skin due to spotwelding should not result in rupture of the outer skin.

Thus, the RockweI1 International built-up tank structure integrated all the aforementioned design

chaUenges into the development of the stiffened panels. The fast step in the design of the panels

was to establish the baseline design concept (refer to Figure 7) and assess the stmcturaI efficiency

of the conventional baseline concept versus the SPF stiffener designs. The assessment of the

structural efficiency is shown as Figure 8.

Severa] SPF stiffener designs were developed that would carry the hunch loads and

provide for improvements in the structural efficiency of the stiffened panels. The preliminary

designs developed are shown in Figure 9. A qualitative trade study was conducted with Rockwell

and General Dynamics personnel to down select three stiffener configurations that would be

optimized, and tested as crippling stiffener panels. The results from the qualitative analysis (refer

to Table 4) were very close due to the structural efficiency and producibility of each design,

however, three stiffener configurations were selected that appeared to have high payoff for

continued evaluation as crippling stiffener panels; stepped hat with curved cap, beaded web with

flat cap, and the beaded web with the curved cap.

Three buih-up stiffener concepts were analyzed with the established 10ad conditions: a

"Tee" section, a superplastic formed hat which optimizes the web thickness, ov_alI weight, and

4-8
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height, and a brake-formed constant-web-thickness hat section (refer to Table 5). An equivalent

plate thickness per inch (t-bar) of the built-up stiffened panel geometry, was calculated from the

combination of the skin and stiffener configuration and utilized during design optimization as the

weight of the panel

N X

RingFrame / / / /

spo,Z
Pitch

Hoop
Tension

1Ii

: s

! = Integral unsupported cap width at ring-to-stiffener intersection

= Cap width
= Stiffener-to-skin flange (Critical point for stiffener support of skin against

v,aSnkling)
= Spotweld hoo_wise pitch

Figure 5. Hat Stiffener-Ring Configuration.
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Figure 6. Effect of Spot Weld Htch Versus Parent Met_ Strength fRef. MIL-HDBK-5). 4

1.76"_

2.56"

_L

_ _-_ _! _<-o._

0.155"

L _ 60 It

Figure 7. Baseline Convenfion_l 'T' and Hat Stiffener.
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1. _
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1m,,

10 -2

10 -3
.o

I0 -4

Figure 8.

ALS-L Vehicle
"Baseline"

...._

L';2'j....

E = 11.5 E6 psi p = .093 lb/sq, in.

Fcy = 60,000 psi L = 15 in.
No Pressure Stabilization
2090 A1-Li

T - Stiffener Baseline, efficiency assumed = 1
Curved Cap Hat Stiffener ('NASA)

Curved Cap Hat with Beaded Web (NASA)
Yield

• • • . g| • • • • • i w| • • • • • • • •

10 -7 10-6 10-5 10-4

Nx/EL

Structural Efficiency Curves for Conventional Baseline Stiffener and SPF Designs.

t

BASIC HAT
STIFFENED

STEP HAT
STIFFENED

STEP HAT W/
CURVED CAP

]t-_ ].

CURVED HAT BEADED WEB

Figure 9. Initial SPF Stiffener Designs.

BEADED WEB W/
CURVED CAP
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Table 4a. Qualitative Trade Study. 5

The qualitative trade study examines the relative ranking of the superplasfic stiffener panels
in relation to each other. The areas that were explored for the trade are listed below with
explanations of their area of analysis.

Structural Efficiency = Subjective measurement b_ upon load

I

|

i
bearing qualifications.

2 =
3 =
4 =
5 =

Highly efficient design (comparable to "T" stiffener)
Efficiency close to the "T" stiffener.
Average structural efficiency.
Nominal strucawal efficiency.
Minimal structural efficiency.

The structural efficiency of each stiffener panel is based upon the
3reliminary analysis performed on each design. The different designs (only SPF
configurations were included in this analysis) were examined for their anticipated

structural performance relative to an ideal "I'" stiffener panel.

= Number of manufacturing steps involved in
fabrication of the panel.

2 =
3 =
4 =
5 =

3 to 15 manufacturing steps.
16 to 30 manufacturing steps.
31 to 50 manufacturing steps.
51 to 70 manufacturing steps.
71 or more manufacturing steps.

Manufacturing steps are defined as the number of different stations the
part must go through to be completed (i.e., blank sheet, route edges, form, inspect,
clean, heat treatment, check and straighten, chemically process, prime and paint,
bond, cure, and final inspection). This example of a manufacturing process

consists of 12 steps which break down into a labor intensi_ of 1.

InsI_tion Methcx;l The values depend on the labor intensity and
overall cost of the inspection method being
examined.

1 = Production proven methods can be used, i.e., visual,
configuration and identification.

2 = Production proven methods (high skill radiographic or
ultrasonic tests).

3 = Limited experience methods (in production elsewhere).
4 = Limited experience methods II (experimental).
5 = No experience.
The inspection methods include visual, penetrant, x-ray or experimental

for the SPF panels only.

4-12
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Table 4b. Qualitative Trade Study.

IkJ

Confidence or Risk m This value is strictly subjective. It was
determined by the past experience of the contractor
in fabricating parts similar to designs for the material
being used.

1 = The part being examined is similar to parts that have been

production-fabricated with scrap rates less than 10 percent.

2 = The part being examined is similar to parts that have been
production-fabricated with scrap rates of 30 to 50 percent.

3 = The partbeing examined issimilarto laboratory

demonsu'ation partsof similarsizeand complexity.

The partlacingexamined issimilartolaboratoryparts,but

smallerand simplerindesign.

The part being evaluated is feasible, but the contractor has no

experience in makin_ this part.

z

2-

3=

...

The weighting values depend upon the complexity of the
required tooling and its normality.

No specialtooling is required.

No special tooling except weld jigs, assembly jig, etc.

Special tooling similar to that used with other production

parts.

Special tooling similar to that used with smaller and simpler

parts.

Special toolin_ feasible but no histo_.

Definition: Weighting Factor = These weighting factors apply to the overall weighting for

each phase in the analysis.

2 =

3 =
4 =
5 =

Little effect on cost.

Modcratciy low cost driver.
Moderate cost driver.

Moderately high cost driver.
Major cost driver.
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Weighting Factor =>

Component Configur_on

Table 4e. Qualitative

5 4

Beaded Hat Stiffener

(Superplastic Formed)

Curved Cap Hat Stiffener 3 1
(Superplastic Formed) 15 4

Stepped Hat Stiffener 3 1
(Superplastic Formed) 15 4

Structural Labor

Efficiency Intensity_
2 1

10 4

Trade Study.

3 5 3

Inspection Confidence Tooling Total
Method or Risk
1 2 4

3 10 12 39

1 2 3
3 10 9 41

1 2 3
3 10 9 41

i

II

|

g

i

lib

Stepped Curved Cap (A)
(Strperplastic Formed)

Beaded Curved Cap
(Superplastic Formed)

Stepped C-knved Cap 03)
(Superplastic Formed)

3 1 1 2 3
15 4 3 10 9 41

2 1 1 2 4
10 4 3 10 12 39

3 1 1 5 5
15 4 3 25 15 62

The PANDA II computer modeling program6 and the design criteria loads were used to

determine the optimum frame spacing that would provide general stability for the tank using the

baseline T-stiffened design. Various runs with the PANDA IT program indicated that major frames

should be placed every 60 inches and that an intermediate frame should be placed every 30-inches

(i.e., one intermediate frame between major frames, as shown in Figure 10) could produce a tbar

that would be competitive with the baseline concept. Parametric PASCO runs were made using the

theoretical thinning profile generated for the SPF designs with 2.6- and 2.5-inch hat height and a

3.6-inch spotweld pitch. The same procedure was performed for the extruded hat-stiffened panels

with optimized web thickness and height, and with the brake-formed hat-stiffened panels with

constant-web-thickness. The minimum skin thickness required on all of the design concepts to

contain the internal tank pressure of 56.0 psi ultimate (tskin = Pr/Ftu) resulted in a minimum outer-

skin thickness requirement of 0.155 inch for the 2090-T83 A1-Li concept

im

M

g

Thinning of the stiffener during the SPF process is dependent upon direction of forming.

Forming that resulted with minimum thickness in the flange (outward thinning) required a male

tool, and forming that resulted with the minimum thickness in the cap (inward thinning) required a

femaie tool The PASCO runs showed a lower tba r for inward thinning with the 2.5-inch stiffener

4-14
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(yieldinga thick flange for prevention of inter-spotwcldcrippling),however, outward thinning

was selected on the basis of increasing the cap thickness to alleviatelocal buckling in the

unsupported length of the hat-frame cap and alsofor itsabilityto increase the Euler column

allowable of the stiffenedpanels. The outward thinning 2-inch depth hat was selectedover the

outward thinning2.5-inchdepth hat on the basisof having a slightlylower tbar (refertoFigure 11)

thus reducing the overallLife Cycle Cost of the vehicle. The beaded web radius (0.25 inch)was

used in the design based on successfuldesigns thatused the standard sinusoid bead configuration

in severalRockwell aircraftconfigurations.

=

The hoop-wise spotweld pitch (referto Figure 5) for the cripplingpanels was sclcctedin

order to provide clearance for the spotwelding equipment during fabricationand tominimize the

fabricationcostsby maintaining one row of spotweld between each stiffener.The one remaining

requirement to be addressed during the panel design was the minimum spot weld pitch (rcfcrto

Figure 5). The pitch was selectedbased upon the requirement to minimize inter-spotcrippling

during axialloading on the spccimcn, while preventingseverereductionsinouter skinparentmetal

strcngthsor shunting during wclding. An inter-spotpitch of one inch was initiallysclcctcdto

maximize the performance of the spot welds during testing,but was increased to 1.125 inches

based upon further analysis of reductions in parent skin strength and structural performance of the

skin-stringer structure.

In summary, the initial ALS LH 2 vehicle superplastic formed stiffener designs were based

on a 2 inch depth hat configuration, that utilized a 4.5-inch hoop-wise spotweld spacing, a 1.125

inch inter-spotweld pitch, and with 30-inch intermediate frames required between the 60 inch major

ring frames.

4,1,5 CRIPPLING PANEL DESIGN

A length of 15 inches was selected to insure local buckling in the (refer to PASCO results

shown in Table 6 and 7) crippling specimen panels during testing. Material was procured at two

thicknesses at the onset of the program based upon predicted loads on the ALS-L vehicle in order

to alleviate supply problems during fabrication. The fluctuations in the loading requirements for

the program resulted in thicker stiffener configurations and outer skin materials for the crippling

panels than the final loading requirements necessitated. Thus the improvements in panel weight

(driving the life cycle cost savings up) and performance due to the change in thickness would

further benefit the overall built-up concept approach.
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Table 5. Summary of Baseline Design (Via Panda II).

l

I

II

Configuration Frame Stiffener
Pitch to Skin

Moment Stiffener Stiffener
ofIner_ Centroid Pitch

(in.) (AmaRatio) (INA)

['Olff

ylm (in.) (in.)

m

m

m

2.77"

__ I [ "9l--.119" t 0.11' "

0.155" " I

I Stiffened Baseline

['_-- 1.5"-'_

60 1.6 1.9 0.81 5.76

0.155"

Regular Hat (Opt. Web)

o
Regular Brake Formed Hat

0.277

0.318
with

spotwcld
requirement

60 1.48 1.3 0.92 5.0 0.295

2.08 >1.3 5.0
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0.30,

Hat
tb_r

0.25, ._

0.20'

L = 30 inches ....

0.15 /

0.10

0.05

=_...

Z Li

0.00 ¸

10 15 2O 25 3O 35 40 45 50

Length - Inches

Figure 10. Length Between Intermediate Rings Versus Hat tbar

55 60

0.30

,i

T] I-4

-_i:ii
t ..

| i]

Hat
tbar

0.25

0.20

0.15

0.10

0.05

0.00

1 2 3 4

Stiffener Height - Inches

Figure 11. Stiffener Height versus Hat tbar for the Stepped Hat. PASCO Analysis for
Outward Thinning.
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Table 6. Summary of PASCO Analysis Results for Stepped Hat and Beaded Web
Hat Sections Formed from 7475 Ai Joined to 2219-T81 A! Skins.

Stiffener

Length
(in.)

15 (S.H.)
15 (S.H.)

30 (S.H.)
30 (S.H.)

15 fB.H.)

30 (B.H.)
30 (B.H.)

15 (S.H.)

15 (S.H.)
15 (S.H.)

30 (S.H.)
30 (S.H.)

Cap
Width

(in.)

0.8

0.8

0.8
0.8

0.8

0.8
0.8

1.1

1.4
1.4

1.4
1.4

Vehicle

Loading
fLb_.)

Nx = 10,000
Nx = +7607

Ny = -7002

Nx = 10,000
Nx = +7607

Ny = -7002

Nx = 10,000

Nx = 10,000
Nx - +7607

Ny = -7002

Nx = 10,000

Nx = 10,000
Nx = +7607

Ny = -7002

Nx = I0,000
Nx = +7607

Ny = -7002

Stiffener/Skin
Factor

.0n./'m.)

1.16
1.10

1.05
1.28

1.00

0.72
0.95

1.22

1.20
1.10

1.20
1.10

Failure
Mode

Buckling L = 3.75"
Skin Tension

Buckling L = 30"
I.xw.al Skin Tension

Buckling L = 3.75"

Buckling L = 30"
Buckling L = 30"

Local Skin Compression

Buckling L = 3.75
Local Skin Tension

Buckling L = 3.3"
Local Skin Tension

Table 7. Summary of PASCO Analysis Results for Stepped Hat and Beaded Web
Hat Sections Formed from 2090 AI-Li Joined to 2090-T83 AI-Li Skins.

Stiffener Cap
Length

(in.)

15 (S.H.)

15 (S.H.)

30 (S.H.)

30 (S.H.)

15 (B.H.)

Width
(in.)

0.8
0.8

0.8
0.8

0.8

0.8
0.8

Vehicle

Loading
(Lbs.)

Nx = 10,000
Nx = +7607

Ny = -7002

Nx = 10,000
Nx = +7607

Ny -- -7002

Nx = 10,000

Nx = 10,000
Nx = +7607

Ny = -7002

Stiffener/Skin
Factor

(in./in.)

1.13

1.14

1.13
1.14

1.00

0.78

1.00

Failure
Mode

Local Hat Compression
Local Hat Compression

Local Hat Compression
Local Hat Compression

Buckling L = 3.75"

Buckling L = 30"
Buckling L = 30"
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An advantage of the SPF process over conventional sheet metal forming practices is that

thinning in the part can be tailored per design r_luiremcnts. Thinning for the sfiffcn_ during the

SPF process is dependent upon direction of forming and forming strain rate. Figures 12 and 13

depict the theoretical thinning prof'fle for the crippling stiffens" test specimens (the stepped hat and

beaded hat stiffeners respectively), from the Rockwell Intvrnational-SPF thinning and flow

stress/swain code. The Rockwell pressure versus time modeling tool was developed under internal

research and development funding during the 1970's and 1980's. The model utilizes superplastic

uniaxial flow stress and strain hardening behavior of a desired material system in conjunction with

the required part or tool geometry. The model generates a forming pressure profile, based upon

the aforementioned parameters, and a stage-by-stage (simple cup forming to complex siclc wan and

corn_ forming) prediction of the thinning behavior of the mau.n'ial during the forming operation.

The model has been successfully used for aluminum, aluminum-liflfium materials, titanium (SPF

and SPF/DB), and other high teml_raturc materials.

Parametric runs using PASCO wcrc made using the theoreticalthinning profileof both

stepped hat and the beaded hat stiffenedpanels atvarious lengths and arc shown in the matrix

below. The resultsfrom the analysisarc summarized inTables 8 through II.

rm=#

..+A

W

Parametric Runs

a. Frame spacings; 15.0inches;30.0 inches;and 60.0 inches

b. Depth of the stiffeners:2.0 inchesand 2.5 inches

c. Inward and Outward Forming

The crippling stiffeners were fabricated from the 7475-SPF Aluminum (starting gage =

0.100 inch) and 2090-SPF AI-Li the (startinggage =+0.090 inch). The measured thinning profile

from the formed parts resultedin range of flange thickness from 0.060 to 0.070 inch. The

resultingallowable inter-spotpitch+w_s _ual to 1.125 inches. The resultingnugget diameter

obtained during welding was 0.040 inch with an inter-spotcripplingstrengthof 50,000 psi. The

inter-spotcripplingstrengthwas slightlyabove the yieldforthe skinmaterialwhich yieldeda 95%

hoop tensionefficiency;hence, a satisfactorycompromise was accomplished forthe design of the

Type I cripplingspecimens.

The cross-sectionsof the selected crippling stiffenersare shown in Figure 14 and

Reference Drawing L9111392 shown in section4.4.1.2,Figure 214. A 0.190 inch skin thickness

was utilizedto preclude the generationof an additionalresistancespotweld schedule so as not to
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impact theprogram schedule.The skin wasmachinedasshownin the drawings to provide for

local failure of the stiffener component.

4.1.5.1 PASCO Analysis

The PASCO (Panel Optimization/Analysis) program developed by NASA-Langley

Research Center 7 was used to develop and analyze the SPF stiffener configurations. The PASCO

program has the ability to handle curved p_ along with _gdiffcrences that are indicative of

the SPF process g. The input to the PASCO program for the stepped hat and the beaded hat

configurations arc shown in Tables 12 and 13 and Appen_ A. These inputs utilized the average

thicknesses that were measured on the formed stiffener configurations for the inputs into the

program.
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Inward Forming
%
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2' 45.2 2
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i ii

Outward Forming
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29.0
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Figure 13. Beaded Hat Concept Designs for Type I Crippling Panels and the Theoretical
Thinning at Selected Points on the Stiffener.
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Table 8. Summary of PASCO Results for the 2090-T62 AI-Li 2-inch Stepped Hat
S tiffener.

Ring Pitch

(in.)
OUTWARD

15

30

60

0.248

+

3 Integral Frames

0.248
+

1 Integral Frames

0.382

INWARD THINNING
15 0.241

+

3 Integral Frames

30 0.241
+

1 Integral Frames

60 0.413

Mode

1
2

3

1
2
3
4

1
2

1
2

3

1
2

X

fWavelenmh)

15.0

3.75

3.0

30.0
6.0
4.286
3.75

Eigenvalue

Factor

4.064
1.514
1.548

1.925
1.698
1.542
1.515

6O
12

15.0
3.75
3.0

30.0
6.0
4.286

60
12

0.9918
16.04

4.332

1.432
1.461

1.333
1.801
1.482

0.8223
15.36

tf

(in.)

0.039
0.039
0.039

0.039
0.039
0.039
0.039

0.093
0.093

0.086
0.086
0.086

0.086
0.086
0.086

0.118
0.118

tc

(in.)

0.090
0.090
0.090

0.090
0.090

0.090
0.090

0.217
0.217

0.040
0.040
0.040

0.040
0.040
0.040

0.254

0.254

Skin Thickness = 0.156, Sized from the pressure loads on the LH2 tank.
tf = Flange Thickness, tc = Cap Thickness

Based Upon: Nx = -7606 lb/'m, Ny = +7002 lb/'m, Nxy = -119 lb/in, Pressure = 56 psi

Table 9. Summary of PASCO Results for the 2090-T62 AI-Li 2.0-inch Beaded
Hat Stiffener.

Ring Pitch tba r
fin ,)

OUTWARD THINNING
15 0.306

+

3 Integral Frames

30 0.306
+

1 Inte_al Frames

Skin Thickness = 0.156, Sized

Mode

1
4
6

X

(Wavelenzth)

15.0
3.0
2.5

30.0
3.33
2.72

from the pressure loads on
tf = Flange Thickness, tc = Cap Thickness

Based Upon:

Eigenvalue

Factor

6.065
2.5
2.88

2.045
2.66
2.65

the LH2 tank.

tf
fin.)

0.052
0.052
0.052

0.052
0.052
0.052

tc
(in.)

0.139
0.139
0.139

0.139
0.139
0.139

Nx = -7606 lb/in, Ny = +7002 lb/'m, Nxy = -119 lb/'m, Pressure = 56 psi
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Table 10.

Ring Pimh
(in3

30

Layered Modeling of 2090-T62 AI-Li 2.0-Inch Beaded
Using the PASCO Analysis.

tbar

0.264

+

1 Integral Frames

Mode

1

4

6

tWavf]en__)

30.0

4.287

2.308

Eigenvalue
Factor

1.99

1.44

1.47

tf

Hat

(in.)

0.039

0.039

0.039

Stiffener

tc
(in.)

0.90

0.90

0.90

) mJl

ill _J

A _

Table 11. Summary of the PASCO Results for the 2090-T62 AI-Li 2.S-Inch
Stepped Hat.

Ring Pimh tbar
(in.)

OUTWARD THINNING
30 0.25 +

1 Integral Frames

60 0.272

INWARD THINNING
30 0.240 +

jl Integral Frames

60 0.413

Skin Thickness = 0.156, Sized

Mode

1

3

1

2

1

3

Z.

(W_vclen_h)

30.0

4.286

6O

12

30.0

4.286

60

Eigenvalue
Factor

2.976

1.238

0.9958

2.851

2.086

1.125

0.9731

from the pressure loads on the LH2 tank.
tf = Flange Thickness, tc = Cap Thickness

Based Upon:

tf
(in.)

0.039

0.039

0.148

0.148

0.086

0.086

>0.17

tc
(in.3

0.090

0.090

0.110

0.110

0.040

0.040

>0.074

Nx = -7606 Ib/'m, Ny = +7002 Ib/'m, Nxy = -119 Ib/'m, Pressure = 56 psi

= :

w
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_" Outward Thinning
i

4.50

0.190
0.155

I

r_-I 1.00

I °.,°
,U,Inward Thinning

1_Outward Thinning

to, , /T-1
= /__ : I,f _'oo

(Rotated)
.4_0.180_ 0.40

Inward Thinning

t (start) = 0.100 inch for 7475 Beaded and Stepped Hats
t(start) = 0.090 inch for 2090 Beaded and Stepped Hats

Figure 14. F'mal Type 1 Stepped Hat and Beaded Web C'rippling Specimen Panel Designs.
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Table 12. Typical PASCO Input for 7475 AI Stepped Hat Stiffener Concept.

iStepped Hat 4.5 " wide with 0.8" Cap - WA15 - 7475 Hat, 2219 Skin
$CONDAT$
$PANEL

B = 0.3,3.9,0.5,1.096586, 0.15,1.096586,0.8,1.0,0.4103647,

T = 0.0775,0.031,0.031,0.031,0.031,0.035,

THET = 0.0,0.0,0.0,

LINK=0,

MAT(l,1) = I,

MAT(2,1) = 2,
MAT(3,1) = 2,
MAT(4,1) = 2,
MAT(5,1) = 2,

MAT(6,1) = 2,
KWALL(I,I) = 1.
KWALL(I_)= I,
KWALL(I.3)= 2,
KWALL(I,4) = 3,

KWALL(1,5)= 4,
K'WALL(1,6)= 5,
KWALL(I,7) = 6,
IWALL = 1, 2, 3,
HCARD =

ICARD =

,

4,5,6, 7, I,I,

4,-II,4,-9,8,

4,-12,6, -9,8,

4,-13,4,9, 8,

4,-14,6,9, 8,

10,20, 3, 1I,5, 12, 7, 14,5, 13,3,

5,30, I,2, -20,I,
5, 1,2, I,-990,9000,

5,2,11,2,3,3,

3,3,4, 11,

3,4,5,5,
3,5,6, 12,

3,6,7,7,

3,7,8, 14,

3,8,9,5,

3,9,10, 13,

3, I0, II, 3,
3,11,12,1,

3, 12,-990, 9000,
EL= 15.0,IP =-2,JPRINT = I,

MINLAM = 15,NOBAY = I,FSTIFF = 1.0,NLAM(1) = 5,7,9,11, 13, 15,

NX(1)= 10000,
NY(1)=o,

_(1)=0,

!$MATER

E1(1)= i0__r_,E2(I)= 10.5_S,E1_I)=4.0_, ANUI(1)= 0.33,P.HO(1)= 0.I02,
E1 = 10.5E6, El(2) = 10.5F._,E12(2) = 3.8F__,ANUI(2) = 0.33,RHO(2) = 0.I02,

ALLOW(1,I) = I,50.0 E3, -63.0E3, 50.0 E3, -50.0E3, 36.0 E3,

ALLOW(I,2) = 1, 64.0 E3, -74.0 E3, 64.0 E3. -64.0 E3, 45.0 E3,
$

I I_::I
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Table 13. Typical PASCO Input for 7475 A! Beaded Hat Stiffener Concept.

i

il
Regular Hat with Beaded Web - HAl5 - 7475 Hat, 2219 Skin - Measured
CONDAT$

SPANEL

B = 0.3, 3.9, 0.65, 3*.718022, 1.0, 1.0, 0.3713907,
T ffi -0.0775, 0.030, 0.090, 0.045, 0.040,
TttEF = 5*0.0,

MAT(l,1) = I,
MAT(2,1) = I,

MAT(3,1) = 2,
MAT(4,1) ffi 3,
MAT(5,1) = 1.
KWALL(I,I) = i.2,
KWALL(I_) = 1.
KWALL(I,3) = 2,
KWALL(1,4) = 3, 4,
KWALL(1,5) = 3, 4,
KWALL(I,6) = 3, 4,
KWALL(I.V) = 5,
MALL= I,
HCARD

2,3,4.5,6,7,1,1,

4,-II, 4,-9,8,

4.-12, 5,-9,8,

4,-13. 6.-9,8,

4,-14, 6,9,8,

4,-15, 5,9, 8,

4, -16,4,9, 8,

I0,20, 3, II, 12, 13. 7, 14, 15, 16,3,
5,30, I.2, -20, I,

ICARD = 5, I,2, I,-990,9000,
5,2,11,2,3,3.

3,3,4, 11,

3,4,5,12,

3,5,6, 13,

3,6,7,7,
3,7,8. 14.

3,8,9, 15.

3,9, 10, 16,

3, I0, 11, 3,

3,11,12,1,

3, 12,-990,9O00.

EL ffi15.0,IP ffi-2,JPRINT ffiI,MAXJJJ ----0

MINLAM = 15,NOBAY ffiI,FSTIFF = 1.0,NLAM(1) = 5,7,9, II,13, 15,
NX(1) = I0000.
NY(1) = 0,
_xY(1) = o,
$
$MATER

El(1) = 10.5E6. E2(I) = 10.5E6. E12(I) = 4.0 E6. ANUI(1) = 0.33,RHO(1) = 0.I01,

EI(2) = 2.51 E4, E2(2) ffi3.36 E6, E12(2) = 4.14 E5, ANUI(2) ffi 0.0, RHO(2) ffi0.021,
El(3) = 2.21 E4, E2(3) = 1.13E6, E12(3) = 5.87E5, ANUI(3) = 0.0,RHO(3) = 0.021,

ALLOW(1,1) = 1, 50.0 E3, -63.0 F_3,50.0 E3, -63.0 F.3, 36.0 E3,
ALLOW(I,2) = 1, 64.0 E3, -74.0 E3, 64.0 E3, -74.0 F_.3,45.0 F_.3,

d.,LOW(1,3) = 1, 64.0 E3, -74.0 F_.3, 64.0 E3, -74.0 F.3, 45.0 E3,

m
I

I

I

|
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m

|
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4.1.5.1.1 Stiffener Modeling -pASCO Ap_t_'oach

The stepped hat had a relatively straightforward input for the PASCO analysis; however,

the beaded web stiffener input utilized the approach suggested by Dr. Davis of NASA-LaRC 9.

The Davis approach utilized three equivalent layers for modeling the sine wave web. The sine

wave A and D matrices were determined by using an individual model of the sine wave web with

PASCO. Af-tcr the matrices were determined, a program was used that had been developed and

furnished by Dr. Randall Davis, to determined the positive moduli and the pseudo-orthotrophic

layer thicknesses required by the PASCO program simulation. An example of the matrix for the

2090 beaded stiffener is shown as Figure 15. The average actual measured web thickness was

0.05 inch. (This translated for the 0.25 inch radius sine wave bead to the following stiffness

mau'i_sl0: )

AB[ =BD

0.623E4 0 0 0 0 0 0

0 0.678E6 0 0 0 0 0

0 0 0.131E6 0 0 0 0

0 0 0 0.390E2 0 0 0

0 0 0 0 0.517E4 0 0

0 0 0 0 0 0 0.563E3

_U

where

IEzz_

Figure 15. 2090 AI-Li PASCO Matrix for the Beaded Web Configuration
Sine wave web radius = 0.25 inch.
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Using the PASCO program 11, the required PASCO input (3 orthotropic layer (symmetric)) was as

follows:

h layer I = h laye_ 3 = 0.09

gl 1 = 2.4069E4

822 = 3.2334E6

£12 = 3.25E5

V12 = V21 = 0

h layer 2 = 0.09

R. Davis 3-Layer

Equivalent Program

Ell = 2.11784

822 = 1.067E6

E12 = 8.119E5

VI2 = V21 = 0

where 811 = Modulus in I direction

822 = Modulus in 2 direction

812 = Shear Modulus

V12 - V21 = Poisson's Ratio

The actual web was not a perfect sine wave; however, an evaluation of the bending

stiffness about the 1 axis of the actual web versus a sine wave indicated close agreement, which

prompted the use of the sine wave simulation.

In order to have the weight of the sine wave web (or beaded stiffener) determined by the

PASCO program, the weight factor was multiplied by the density of each pseudo layer. The result

equal to 0.017 was obtained from [(0.05 in x 0.093 Ib/cu in) / (3 x .090 in)] = {[thickness x

density of the alloy (in this case it was 2090 A1-Li)] / [ 3 (for three layers) x original material

thickness]}. The moduli and layer thickness values developed with the Davis Methodology

(described above), were used in the prediction of beaded web crippling panel failure loads. Similar

matrices were used for the 7475 AI beaded webs as for the 2090 A1-Li beaded panels.

4.1.5.1.2 T vp_ical PASCO Outpo_

Each configuration was analyzed both for uniaxial loading (to compare with the panel test

dam) and for bi-axial loading of the actual tank structure, The output for the PASCO program

produced the buckling wavelength (k), the eigenvalue factor for k, and the projected tbar for the

skin (0.155 inch) and stiffener combination. Thus, from PASCO, for the 15 inch long stepped-hat

crippling panel fabricated from 7475-T62 stiffener joined to 22i9-T81 skin the eigen value,

wavelength, and failure mode are shown in Table 14.
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Table 14. PASCO Output for the 15 Inch Long 7475-T62 A! Joined to
2219-T81 AI Stepped Hat Crippling Specimen.

teer
(inches)

0.256

Mode

1 (Yield)

2 (Compression)

(inches)

........15

3.75

Eigen
Value

2.79

1.16

Length
(inches)

15
15

Nx appliedto model----10,000 lbs.fm.

The lowesteigenvaluewas obtainedwith themode 2 failureand was recordedas 1.16.

The failureloadwas calculatedusingthe Nx loading,thelowesteigcnvalue and thespecimen

width (10,000 Ibs.fm.x 1.16x 6 in.)= 69,600Ibs.

The ultimate load of the part was calculated with the lowest material yield strength of the

stiffener to skin combination, multiplied by the stiffener area (i.e., tbar) and the specimen width

P dr. = 50,000 psi x 0.256 in. x 6 in. = 76,800 lbs. (yield of 2219-T81 skin)

The PASCO analysis, for the 15 inch long beaded web crippling panel fabricated from

7475-T62 stiffener joined to 2219-'1"81 skin resulted in the eigen value, wavelength, and failure

mode shown in Table 15.

Table 15. PASCO Output for the 15 Inch Long 7475-T62 A! Joined to
2219-T81 A! Beaded Web Crippling Specimen.

(inches)

0.264

Mode

1 (Yield)

2 (Crippling)

3.

(inches)

15

3.75

Eigen
Value

1.83

1.00

Length
(inches)

15

15

Thus, initial buckling = 10,000 lbs.fm, x 1.00 x 6 in. = 60,000 lbs. and Pult. panel = 50,000 psi

x 0.264 in. x 6 in. = 79,200 lbs. The detailed output of the PASCO program may be seen in

Appendix B. The choice of length, 15 inch length of the crippling panels, was selected to insure

that the Euler column buckling responsible for failure was much larger than the yield strength of

the skin. Included in the output format are the modal shapes at the various eigenvalues. The

shapes for the stiffeners are shown in Figures 16 and 17.
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Figure 16. Typical Modal Shapes for Stepped Hat Stiffener Using PASCO Analysis.
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Figure 17. Typical Modal Shapes for Beaded Hat stiffener Using PASCO Analysis.
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4.1.5.2 NASTRAN Analysis

Single hat-stiffener NASTRAN finite element models were developed to study and

visualize the buckling modes of the SPF stiffeners, and to compare results to the PASCO analysis.

Initially, a 3 inch long finite element NASTRAN model was generated to study the local buckling

modes for the stiffener configurations. Figure 18 presents the deformed shape for the first analysis

mode. The eigenfactor of 1.085 would be equivalent to an allowable buckling load of 65,100

pounds for a 6-inch-wide Type 1 crippling specimen. Figure 19 presents the 15-inch-long f'mit¢

dement model of the stepped-hat specimen. The model is half of the SPF stiffener test specimen

with symmetric boundary constraints at the center of the hat section. The model is uniaxiaUy

loaded with 10,000 lbs/'m, distributed proportionally to the cross section area at each node. The

NASTRAN buckling analysis solution resulted in an eigenfactor of 1.248 for the first buckling

mode. This would be equivalent to a loading of 1.248 x 10,000 lbsAn, x 6 in. -- 74,880 lbs for the

Type 1 specimen. The NASTRAN results were considered to be in close agreement with the

PASC'O program, as would be expected.

4.1.6 INTEGRALLY STIFFENED STRUCTURE

The overall stability of the tank required intermediate frames to be placed along the vertical

length of the tank at 30 inch intervals (as observed from singly stiffener models at 15, 30 and 60

inch intervals during the development of the optimum stiffener configuration). The objectives of

the providing an integral ring design were as follows:

• Enforce a simple support node at the integral ring to prevent Euler column failure
• Fabricate the stiffeners and integral ring with one forming operation (one-step forming) to

minimize fabrication cost

• Provide load path continuity for the Nx and Ny loads

The initial node concepts included several different configurations shown in Figure 20. These

different approaches included an integral node ("pinch down" configuration), scab-on "T" frame,

and a integral frame with a scab-on overlap CJ" frame).

II

III

|

m

lib

z

m
I :

The "pinch down integral frame" configuration allowed for one-step fabrication of the

stiffened panels, however, due to past experience with a similar frame configuration (a door

fabricated for an _&D program at Rockwell on the B-l), beam column and "Kick" load effects

can present eccentricity problems to the design. The other two concepts shown in Figure 20 (A2,

and A3) required additional fabrication steps from the basic integral SPF version, which would

result in an undesirable increase in manufacturing cost from the one step SPF process.
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3 Inch Hat Stiffener Nx = I0,000 Iborm.

: = =

/
!

/

L

Eigen Factor= 1.085

BucklingAllowableLoad: 1.085x I0,000Ib./'m.x 6 inch= 65,000Ibs.

Figure 18. NASTRAN Finite Element Model.

4--33



i

15 Inch Stepped Hat Stiffener (ALS 15S3.Bulk.Data) Nx = 10,000 Ib.fm.

i

II
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n --
i m

Eigcn Factor = 1.248

Buckling Allowable Load: 1.248 x 10,000 Ib.fm. x 6 inch = 74,880 Ibs.

Figure 19. NASTRAN Buckling Analysis.

4-34

|

i !=
m 11

m

IE;-

i FT



!

| Thus further evaluation of the joint configm'ation and the Overall behavior of the tank was

necessary prior to completion of the joint design.

The establishment of the integral ring stiffness utilized the "Theory of Elastic Stability"

published by S. Timoshenko presented as follows: (8474 Ib/'m loading condition utilized for this

analysis)
K_q'd = (iox2H_O/i_

L

Kceq'd= (16x 9.817x II.5x 106x .48)/(60)3= 4035 Ibm (toenforcesimplesupportnode)

The preliminary analysis indicated that for the particular loading scenario, an integral ring with an I

- 3 in4 would enforce the node. As a result of the preliminary analysis, several node conditions

were examined for the barrel section, along with the effects of the different loading conditions on

the node geometry.

A parametric analysis was performed to correlate the results of the PANDA II, PASCO,

NASTRAN and hand calculations. The PASCO analysis provided margin of safety and critical

element failure modes for the stiffeners. For buckling modes, the wavelengths and load factor to

failure was obtained. The allowable stiffener loading, which becomes critical as the stiffener

length increases, was compared to the Failer column allowable.

Per = (_2El')/L2

Single hat stiffener NASTRAN models with lengths of fifteen, thirty and sixty inches were

created to study the buckling modes. Hgure 20 presents the sixty inch model deformed buckling

mode. Table 16 presents a summary of the analysis studies for a two inch deep brake formed hat

stiffener. An additional sixty inch long NASTRAN model was created with multiple stiffeners and

a center C-Bar flame support. The NASTRAN model was used to determine the moment of inertia

requirements for the intermediate ring (node) to enforce a nodal point. Previous hand calculations

indicatedthat3 in4 was requiredto enforcethenodal point,however, thePANDA IIresults

indicatedapproximately0.5in4whiletheNASTRAN resultsindicateapproximately1.0in4. The

latterresultappearsthemost acceptablebasedupon Rockwell previousexperiencewithstructural
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analysis using the NASTRAN program. Figures 21 and 22 present the first two modes and eigen

factors from the multiple stiffener model .___L_

60 INCH NASTRAN FINITE ELEMENT MODEL

HAT STIFFENER - DEFORMED SHAPE otro_o
e_ • I. E_J__.__

. ::;S'" TYPE -

:!_._S!ii._i.-!i ol_r. - ,.my - w,q_L__..-

i:iS:...???:i::_:2.;!i_ z

N_,'e 20 NASTRAN Sixty Inch Modal Deformed Buckling Mode.

Table 16.

T]H_ : I I =1'3:33

Summary of Parametric Study for 2.0 Inch Deep Hat Stiffener.

Ring Pitch tbar

15 Inch .295

tf tcAnalysis Mode Lamda Eigen Value

T.vpe ,, (Wavelenmh) Factor
PASCO 1 15 Inch 6.98

4 1.67 Inch 2.4

NASTRAN 1 15 Inch 7.56

(C-Bar Model)
NASTRAN 2.0 Inch 2.7

('Plate Model)
Euler Column

Compression Allowable

.080 .080

15 Inch 6.7

V V I.xcal 1.95 V V

30Inch .295 PASCO .080 .080I 30 Inch 2.18

4 2.0 Inch 2.43

I 30 Inch 1.88NAS'IRAN

(C-Bar Model)
NASTRAN

(Plato Model)
Euler Column

Compression Allowable

2.5 Inch 1.4

30 Inch 1.67

V V Local 1.95 V V

60 Inch .295 .080 .080

V V V V

PASCO 1 60 Inch 0.58
NASTRAN 1 60 Inch 0.47

(C-Bar Model)
NA_ 1 60 Inch 0.6

(Plate Model)
Eulcr Column 60 Inch 0.42

NASTRAN 60 Inch 1.09

('Multi le C-Bars with center frame s R-TYPE 3)
tf--thickness of ge, tc --thickness of c._
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60 INCH MULTIPLE CBAR NASTRAN MODEL

WITH CENTER SUPPORT FRAME

MODE 1: EIGEN VALUE FACTOR = 1.09

-,...

°'- 4

eJ_z I

I

TYI_ IAU_

DI_'T H • |,M

NOT. It,, I.I
y ,s 41;.I

TZ

X

P typ = 27360 Ibs. .m_

(per stiffener) _, _/'_,w
TIIIE I |St _le_i_

Figure 21. NASTRAN Sixty. Inch Muhiple C-Bar Model with Center Support Frame, Eigen
Value Factor = 1.09

l 60 INCH MULTIPLE CBAR NASTRAN MODEL

WITH CENTER SUPPORT FRAME

MODE 2: EIGEN VALUE FACTOR = 1.89

-,.,.• .,..
"-,,.

E _

Z _

=

Figure 22. NASTRAN Sixty Inch Multiple C-Bar Model with Center Support Frame,
Eigen Value Factor = 1.89
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Optimization of the node intersection was continued with the development of a detailed

NASTRAN finite element model (as shown in Figure 23) on the a large scale panel with a 30"

node to ber_.er simulate and optimize the panel behavior under different loading conditions. The

NASTRAN model utilized C-Bar elements as a cost effective means to evaluate the ring sizing

necessary to enforce the node with both axial and bi-axial loading scenarios. A typical result of the

node analysis is shown in Figure 24. The sizing of the interim ring with the NASTRAN analysis

resulted in a design that provides maximum efficiency for the node (refer to Figure 25) with some

sacrifice to overall manufacturability of the design. Additional designs were developed that would

also satisfy the objective of node reinforcement and minimal manufacturing cost
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Figure 23. NASTRAN Model of Column Buckling Panel Design.
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14X-Ill, Olli L.BI t14

Figure 24. Column Buckling Panel Deflected (Solid) Under Mode 1 and Non-Deflected (Dashed)

Uniaxial Load (Nx --- 10,000 lb/in), Stiffener Spacing = 4.0", Integral Node I - 1.0 in 4-

=

IN T _ C_F__, _. P'YgAMto

=

Figure 25. Example of One Integral Node Configuration for SPF Stiffened Structure.
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4.1.7 COLUMN BUCI_ JNG PANEL

At the completion of the crippling panel tests, the stepped hat stiffener configuration was

chosen for continued development based on its load carrying capability. The stepped hat stiffener

was modeled (refer to section 4.1 6) under NASTRAN and optimization of the stiffened structure

was conducted. PASCO analysis of the stepped hat stiffener was conducted with a larger cap

width to enhance the overall stability of the structure. The panel configuration was chosen based

upon the desired length of the panel (column of at least 60 inches) and limited by the width of

available material (48" minus sealing area). The resulting panel design (refer to Figure 26)

maintained the inter-stiffener and inter-spot spacing developed during the development of the

s ' enerpand.

The PASO0 program was used in conjunction with a revised thinning profile (obtained

from average measurements on the formed column buckling panels (7475 and 2090 aluminum

mater/als)) shown in Hgure 27. The failure loads were developed on the panels and are shown in

Table 17 with the failure modes that resulted in beam column failure and inter-spot crippling. The

primary failure mode was column failure, with inter-spot crippling occurring as a secondary failure

mode. The te_ plan for the column buckling panel is included as Appendix C.
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Figure 26. Column Buckling Panel Configuration.
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Figure27. Average Thickness At Flange and Cap forColumn Buckling Panel.

Table 17.

Material

7475 AI

I(0.I00StartingGage)

2090 AI-Li

(0.090 Starting Gage)

Column Buckling Panel Predicted Failure Loading.

tbar
(in.)

0.255

0.245

Predicted Column

Failure Loading

6510 Ibfm

(25.5Ksi)

6840 Ibm

(27.9 Ksi)

Predicted

Inter-spot Cripplin:

41 Ksi

37.4 Ksi

Average measured thickn_ _from Column Buckling Panel.

Gage unavailableatthistime,however, would have been prcfcrable.

Thickness

(in.)

*to = 0.05

*q = 0.091

*to = 0.O46

*q = 0.08

4.1.8 DOUBLER-REIN'I_RCED FUSION WELD

The final panel configuration that was examined during this program was the vertical fusion

weld or panel-to-panel joint. This joint configuration was based upon past work at General

Dynamics Space Systems Division on the ATLAS and Centaur upper stage. The current ATLAS

and Centaur pressure stabilized tanks are entirely fabricated from stainless steel foil. The joints are

fusion butt-welded together and reinforced with a spot-welded doubler over the weld. This

doubler-reinforced concept eliminates the need for machined weld lands (commonly used for

launch vehicle pressm_ vessels at an increased fabrication cost, and weight penalty to the structure)

to reinforce the joint by utilizing the doubler as a major load carrying member for the fusion weld.
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Thesuccessof theGeneralDynamics use of the doubler-reinforced joint prompted the translation

of the joint into an integral part of the ALS program for the vertical joint (refer to Figure 28). The

development of the joint was based upon the fusion weld and resistance spot weld data generated

during task 3 (section 4.3) of this program. Specific doubler testing was conducted under task 3

that provided a greater understanding of the behavior of the doubler over the Variable Polarity

Plasma Arc (VPPA) fusion weld for load transfer. The test data was then utilized with finite

element modeling techniques to predict the behavior of the fusion weld joint during bi-axial (axial _
and hoop) loading conditions.

/_t_BAnREt§i_:_i6_i

|

NLS TANK SUB-.SSEMBLY i i

i i

Figure 28. Vertical Doubler-Reinforced Joint on the ALS Vehicle.
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4.1.8.1 Modeling of Doubler-Reinforced Joint

The IDEAS (a post-processing model developed by "Structural Dynamics Research

Corporation" to maximize information gathered under current finite element models) and the

NASTRAN finiteelement model (FEND programs were used topredictthe failuremodes of the

fusionweld panel. The weld jointwas analyzed as a non-linearstructme,hence itis a complex

jointtomodel. The goal of theanalysiswas toprovide a theoreticalapproximation of the stresses

inthejointthatcan bc compared to the testresultstoassessthe reinforcedjointefficiency.The

jointconfigurationwas comprised of severalparameterslistedbelow:

• Spot-weld pitch was averaged at 1 inch for both the doubler reinforcedjoint and the

applicationof the stiffeners.

• C-Bar elements were used tosimulatethe attachmentof thedoubler or stiffenerto the skin

by resistancespotwelding.

• C-Quad 4 elements were used to simulate bending and membrane stressesfor skin,
doubler,stiffenerconfigurationsand fusionweld.

• Materialpropertiesforthematerialsas summarized inTable 2 and 3.

• The fusionweld isconsideredtobca major non-linearelement of theoveralljoint.

• The approach to simulationof the non-lineareffectisto use the secantmodulus of the test

articlestressstraincurve (doublerreinforcedtensiletestswere conducted earlierthisyear

and arcdiscussedunder Task 3,section4.3of thisreport).

The bi-axialtestpanel has been designed tosimulate the weld jointconfigurationof the

built-upcryogenic tank sections(referto Figure 29). The panels consistsof two skin sections

fusionwelded togetherby the variablepolarityplasma arc (VPPA) process,two stiffenersections,

and a doubler for reinforcement of the fusion weld joint. The doubler reinforcement joint is

welded over the shaved fusionweld using an in-linespot-weld pattern.The configurationwas

designed to minimize the cost tofabricatethe weld joint(eliminatingmachining of a heavy weld

land)while providingmaximum jointefficiencyatthelowest weight. The testpanel was designed

tobe loadedbi-axiallyto simulatebending inthe vehicleand thrust,and internalfuclpressure.

w

The jointconfigurationwas based upon theGeneral Dynamics dog-bone jointefficiency

tests,and past experience with the Atlas configuration.The dog-bone testsshowed a non-linear

jointresponse to the imposed load. A u'uenon-Uncar finiteelement analysiswould include a

NASTRAN iteratingapproach with non-linearmaterialeffects.However, due toprogram funding

constraints,thiseffortwas beyond thescope of theremaining program. Thus thegoal of the finite

element modeling effortwas toconstructa model thatwould provide forreasonablepredictionsof

4-43



the stress distribution across the joint for comparison with test data. The prediction should flso

show the anticipated load at failure, and the location of the failure.
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Figure 29. Schematic of Doubl_'-Reinforced Joint on the ALS Vehicle.

Finite Element Model of Doubler-Reinforced Fusion Weld

The results and constraints of the model are summarized as follows:

• Spot weld pitch measurements are set at I inch to facilitate the model

• The IDEAS model was utilized to develop a NASTRAN model of the joint. A static
NASTRAN run was performed with post-processing and stress contour plots in the IDEAS
program.

• C-Quad 4 elements were used to simulate the plates. Stiff C-BAR elements were used to
simulate the spot-welds. A C-Quad 4 element w_ used fog the _on weld atea.

• The non-linear effect was simulated by using a reduced modulus of the fusion weld area at
discrete load points as shown by the General Dynamics dog-bone test stress strain curves
of the fusion weld joint (shown in Table 18 and Figure 30).
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Table 18. Fusion Weld Test Case
with 0.100"

Load

fibs)

766

(1532 Ibfm)

1347

(2694 Ibfm)

1400

(2800 lbfm)

1600

(3200 lbfm)

1800

(4000 lb/in)

2000

(4000 lbfm)

3050

('6100 Ib/in)

Area

(in2)

0.0784

0.0784

0.0784

0.0784

0.0784

0.0784

O.0784

Data for 0.155" 2219-T81 VPPA Reinforced

7475-T62 Aluminum.

o = P/A

(vsi)

9750

17148

17755

20369

22915

25461

38828

8
(in)

0.0005

0.002

0.0022

0.0035

000545

0.0082

0.14

Z=  5/L

0.001

(1000 infm)

0.004

(4000in;m)

0.0044

(4400 infm)

0.007

(7000 in;m)

0.0109

(10900 irurm)

0.0164

(16400 infm)

N.A.

E S

(Msi 

9.75

4.29

4.0

2.91

2.1

1.55

0.139

(plastic)

* Failure

Note: Half of Gage Section Width = 0.5025" (Ave), tave = 0.156", Area = 0.0784 in 2

! K_.. J

ill L_

t..,.

Sires* (ksi)

I

I
32 i
÷- i

24

16

E = 9.75 msi

: {l_amatcd Stress at Fusion
Weld for BI-Axlal I.oadin_.

/ " ,// .I I ._..._-'- [ %95_ " ' " G.D. test s xeimen)
k,/ _- .

I/...__ ..,...-- £s" -:",4.
.,,,'-1/..- / . --"

---

0 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Figure 30. Stress-StainCurve forDoubler-Reinforced Fusion Weld Joint.

0.016
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Two verification runs were made with the model The first evaluation involved application

of a compressive axial load of 1000 Ib_ to the model and evaluate the uniformity of the load and

the stress across the joint. The model produced a uniform stress in the plate elements of-3500 psi

which correlated with the expected stress of-3921 psi (due to Tbar of the section = 0.255 inch and

o = -1000 lb per inch/0.255 in, where the -1000 lb was taken from the elastic portion of the

fusion weld stress strain curve). The second verification run utilized a failure load of 7500 Ib/m,

obtained from the dog-bone tests, for the hoop direction. A reduced fusion weld secant modulus of

E s = 1.05E6 (estimated from stress swain curves) was u_ The stress contour plots from the

IDEAS program is shown as Figures 31 and 32. The model indicated that the bending stress is

centralized in the joint area plates with the highest stress carried by the first row of spot welds.

The anticipated point of failure is in the first row of spot welds indicated by both the dog-bone test

and the model, despite a 30,000 psi load across the fusion weld. It was concluded that the model

produced a reasonable representation of the stress distribution across the joint for bi-axial testing,

and that test results should be similar to the simulation.

4.1.8.3 Model Failure Load and Location Predictions

The bi-axial failtae loading predicted by simple hand calculation was as follows:

Hoop = +5807 lbfm and Axial = -6307 lb/m

The joint loading in the model utilized a secant modulus of 1.83E6 for the fusion weld pre-

determined by the stress strain curves generated from the dog-bone testing. The resulting stress

contours observed in the joint with the model are shown in Figures 33 and 34. It was concluded

that the finite element model shows a failure in the fast row of spot welds at a loading of 29,000

psi(which Correlates with the G.D. uniaxial dog-bone tests). A comparison of the average plate

stress for the hoop loading and for the bi-axial loading conditions are shown in Figure 35. The

resulting stress distribution a_oss the joint appeared similar to/.hatobserved for a bonded lap joint,

which would be expected based upon the type of spotwelding attachment used during this

program. The final joint configuration that was developed as a result of the test data and analysis is

shown as Figure 36.
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Figure 31. Top View of Stress Contour Plot for Hoop Loading = 7500 lb/in.

ki |,

Figure 32. Bottom View of Stress Contour Plot for Hoop Loading = 7500 lb/in.
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Figure 33. Top View of Stress Contour Plot for Hoop Loading = 5887
lbfm and Axial Load = -6307 lb/in.

|
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£

Figure 34. Bottom View of Stress Contour Plot for Hoop Loading = 5887
lb/in and Axial Load = -6307 lb/'m.
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Figure 35. Stress Distribution Curves for Weld Joint Area Via FEM Model.
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Figure 36. Doubler-Reinforced Fusion Weld Joint.
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4.2 SUPERPLASTIC MATERIAL CHARACTERISTICS

4.2.1 SUPERPLASTIC FORMING (SPF) MATERIAL CHARACTERIZATION

Superplastic characterization of the materials used during this program involved

metallographic examination of the material prior to and after forming, static exposure to elevated

temperature (for grain stability), uniaxial tensile testing at constant strain rate and variable strain

rate with and without back pressure, and finally producibility forming trials. These

characterization tests have been developed at RockweLl to provide information on the starting grain

size of the material, stability of the grain size due to elevated temperature exposure, the presence or

absence of recrystallization during forming or grain growth during forming, flow stress of the

material at various strain rates, flow stress of the material with varying amounts of back pressure,

flow stress whereby superplastic elongation is maximized, requirements for suppression of

cavitation, and formability characteristics for each alloy.

There are various other points of information that can be obtained during testing that

include strain hardening, or softening as was the case with the second batch of Weldalite-IM9

(x2095 A1-Li) obtained during the program, the strain at which cavitation initiates for each material

at various levels of back pressure, etc. All of these various data points are used during the

development of a forming process for structural components. The information gathered during the

characterization phase of the program is placed into the Rockwell superplastic forming computer

model and when combined with the configuration of the article to be fabricated, a thinning profile

and forming pressure versus time profile is generated for the component to be formed.

|J

w

= :

7

r

The aluminum and aluminum-lithium materials examined during this program included

7475 AI, a material that has been used on several programs at Rockwell, two production A1-Li

alloys, and one experimental A1-Li alloy (refer to Table 19). The characterization study for the

7475 A1 material was limited to verification of uniaxial superplastic tensile properties and

metallography in order to determine the quality of the material prior to fabrication. Additional tests

were run on the 2090, 8090, and x2095 alloys to fully characterize each material.

Superplastic tensile tests were carried out on an Instron machine equipped with a computer-

aided controller that maintained constant strain rate with a superimposed hydrostatic pressure for

suppressing cavitation during testing (refer to Figure 37 and 38). The uniaxial testing machine is

equipped with a five zone furnace with a 12-inch-long uniform temperature zone that maintains

temperatures up to + 2°C, and equipped with a retort that is capable of maintaining vacuum or gas

pressures up to 600 psi. The specimen and puUrod assembly are placed within the retort with an
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on-line load cell (water cooled)

superimposed hydrostatic pressure.

Table 19. Superplastic AI

which allows for load measurement during testing with

and AI-Li Alloys Characterized During Program.

m

w

II

Material =>

Full
Characterization

Verification
Characterization

7475A1 2090 A1-Li

X

X

8090 A1-Li

X

x2095 A1-Li

fWe!dalite-049)
X

Stepped strain rate tests were carried out for each material type at specified test

temperatures. This test was computer-controlled in order to sequentially determine the initial

plastic flow stress at each constant strain rate. The load and extension data collected by the control

computer were processed to provide: true stress versus true strain rate data, a least-squares-fit,

third or fourth order polynomial equation for Log(true stress) versus Log(true strain rate) and

strain rate sensitivity index (m-value) versus log(true strain rate).

Constant true strain rate tests were carried out for each material type at each specified test

temperature with strain rates selected from the analysis of the stepped strain rate test data. The load

and extension data were collected by the control computer and processed to give a graphical plot of

true stress versus true strain. Multi-stage constant true strain rate tests were conducted for 2090

and 8090 AI-Li materials in order to take advantage of the effects that dynamic recrystallization can

provide for enhancement of superplastic elongations during forming. A standard test matrix that

was utilized for the duplex or multi-stage strain rate testing is shown in Table 20.

412.1.1 7475Aluminum

Uniaxial and microstructural evaluations were performed on 7475 A1 (Reynolds MD254 )

for verification of SPF forming parameters prior to use on the program. Figures 39 through 41

show the results from the verification testing on the 7475 AI material procured for this program.

Uniaxial testing and microstructural evaluations revealed some differences from past evaluations of

the 7475 A1 material at Rockwell. However, the material did fall within acceptable ranges of

formability for 7475 A1.
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Figure 37. Superplastic Uniaxial Test Chamber with Hydrostatic Pressure Retort.
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Figure 38. Superplastic Uniaxial Test Chamber with Data Acquisition System.
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Table 20. Test Matrix for Uniaxial

Temperature

914
914
914

950
950
950

986
986
986

Back Pressure

(t_si)
Ambient

200

600

Ambient
200
600

Ambient
200
600

Strain Rate
#1

(ocr second)
2E-3
2E-3

2E-3

2E-3
2E-3
2E-3

2E-3
2E-3
2E-3

Duplex Strain Rate Testing.

Strain
0 to X

0.72
0.72
0.72

0.72
0.72
0.72

0.72
0.72
0.72

Strain Rate
#2

(_r second)
2E-4
2E-4
2E-4

2E-4
2E-4
2E-4

2E-4
2E-4
2E-4

Strain
X to End

End of Test
End of Test
End of Test

End of Test
End of Test
End of Test

End of Test
End of Test

End of Test

t_:

,_.-.

Figure 39.

25/Jm

Microstructure of Superplastic 7475 Aluminum.
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Figure 41. Flow Stress Versus Strain for 7475 A1 at Constant Strain Rate Values between 2E-4
and 8E-4/sec.

4.2.1.2 2090 Aluminum-Lithium

A metallurgical and superplastic characterization of 2090 A1-Li sheets was conducted for

both the -OE16 and -T3 condition. The preliminary metallographic and tensile tests showed that

the material obtained in the -T3 condition was not inherently super'plastic. However, the evaluation

of the -OE16 material showed a fine grained material with excellent super'plastic behavior. The

chemical composition of the materials evaluated on this program are shown in the table below.

Cu Mg Si Fe Mn Zn Zr Li Cr Ti A_ Other A1
2.4 0.25 .010 0.12 0.05 0.10 0.15 2.6 0.05 0.15 0.20 Rem
3.0 0.08 1.9
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4.2.1.2.1 Metallur_cal Analysis

The as-received 2090-OE16 A1-Li alloy contained fine subgrains (2.93 x 2.35 x 3.65 I.tm)

were slightly elongated in the final rolling directio.as shown in Figure 42. However, the fine

subgrain structure coarsened rapidly at temperatures in the range of 950 to 986°F (510 to 530°C).

The average grain size of 2090-OE16 increased to 7.8 _tm in two hours during exposure at the

aforementioned temperatures. Thus hot loading of a part for SPF is recommended during forming

of parts in order to prevent excessive static grain growth.

4.2.1.2.2 Stress-Strain Rate Behavior

Stepped strain rate tests were performed on the as-received 2090-OE16 material at 914,

950, and 986°F (490, 510, and 530°C) in air to determine the flow stress levels and strain rate

sensitivity values of the material as a function of strain rate. The flow stress-strain rate data in the

longitudinal and transverse directions are shown in Figures 43 and 44. The results from the tests

showed a decrease in flow stress with an increase in test temperature, and an increase in flow

stress with an increase in strain rate. The maximum strain rate sensitivity for the material was

obtained at an intermediate strain rate (1E-3/sec) which is consistent with other superplastic

aluminum materials. Differences in the flow properties of this material in the longitudinal and

long-transverse directions were observed. The flow stress levels were slightly higher in the long-

transverse samples than in the longitudinal, and the optimum strain rates which correspond to the

maximum strain rate sensitivity (m values) obtained from the jump tests differed by a factor of two.

The longitudinal samples showed more symmetric m-curves (with the implication of higher

superplastic elongations) than the transverse samples.

4.2.1.2.3 $op_rplastic Elongation Data

Several elongation tensile tests were performed under two strain rates (2E-3/sec until a

strain of 0.72 and 2E-4/sec until coupon failure) at 914, 950, and 986 °F in air and under back

pressure (200 to 600 psi). The elongation data on the 2090-OE16 material is shown on Table 21.

The results indicate that 2090-OE16 exhibits very high superplastic elongations using the two stage

strain rate uniaxial test conditions at 950 °F. The elongations can be improved from 400 % in air

(or without back pressure) to over 1425 % with back pressures up to 600 psi (refer to Figure 45).

The increase in uniaxial elongations with back pressure is attributed to the suppression of

super'plastic cavitation which formed in the material during testing in air.
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4,2,1,2,4 Flow Stress-Strain Data

Flow stress-strain curves for the two stage strain rate testing are shown in Figures 46

through 48. The material exhibits strain hardening during the first stage of testing (2E-3/sec) for

strains between 0 and 0.4 which is followed by a softening effect. The flow stress levels during

the second stage of deformation (where the strain rate has been reduced to 2E-4/sec) are

dramatically reduced, when compared with the f'trst stage flow stress values, to approximately 400

psi. Strain hardening in the 2090-OE16 material in the second stage of deformation is negligible

and the small increase in flow stress during the second stage is attributed to dynamic grain growth

in the material.

4,2,1,2,5 Dyn_ni¢ Grain Growth

Metallographic examination of the tensile tested samples showed extensive grain growth

with superplastic deformation (refer to Figures 49 and 50) The grain size increased from 7.8 _tm

in the grip area (strain = 0) to 13.5 ].tm at a strain of 3.0. The grain structure in the deformed area

is more equiaxed than in the grip section. The excessive grain growth in this alloy causes higher

flow stress levels and promotes cavitation when tested in air.

Icj

E

U

=i 5

Figure 42. Microstructure of Superplastic 2090 A1-Li Material.
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Table 21. Superplastic Tensile Elongations of 2090 AI-Li.

ALLOY TMT

2090 OE16

2090 OE 16

2090 OE16

2090 OE16

IEMP PRESSURE ST-RAIN RATE

(°F) (PSI) (Per Second)

914 Air 2 X 10-3 / 2 X 10-4
950 Air 2 X 10-3 / 2 X 10-4

986 Air 2X 10-3/2X 10-4

1022 Air 2X 10-3/2 X 10-4

f%)
246L

392L

444L

341L

2090 OE16 914 Air 2X 10-3/2 X 10-4

2090 OEI6 950 Air 2 X 10-3/2 X 10-4

2090 OE16 986 Air 2X 10-3/2 X 10-4

2090 OE16 1022 Air 2 X 10-3/2 X 10-4

441T

484T
339T

431T

2090 OE16 914 200 2 X 10-3 / 2 X 10-4

2090 OE16 950 200 2 X 10-3 / 2 X 10-4

2090 OE16 986 200 2 X 10-3 / 2 X 10 -4

2090 OE16 1022 200 2 X 10-3 / 2 X 10-4

644L

758L

820L

631L

2090 OE16 914 200 2X 10-3/2 X 10-4

2090 OE16 950 200 2X 10-3/2 X 10-4

2090 OE16 986 200 2 X 10-3 / 2 X 10-4

2090 OEI6 1022 200 2X I0-3/2 X 10-4

427T

630T

658T

546T

2090 OEI6 914 400 2 X 10-3 / 2 X 10 -4

2090 OEI6 950 400 2 X 10-3 / 2 X 10-4

2090 OE16 986 400 2 X 10-3 / 2 X 10-4

2090 OE16 1022 400 2 X 10-3 / 2 X 10-4

613L

854L
702L

905L

2090 OE16 914 400 2 X 10-3 / 2 X 10-4

2090 OE16 950 400 2X 10-3/2 X 10-4

2090 OE16 986 400 2 X 10-3 / 2 X 10 -4

2090 OE16 1022 400 2 X 10-3/2 X I0-4

662T

743T
1049T

709T

2090 OE16 914 600 2X I0-3/2 X 10-4

2090 OEI6 950 600 2X 10-3/2 X 10-4

2090 OEI6 986 600 2X 10-3/2 X 10-4

2090 OE16 1022 600 2 X 10-3 / 2 X 10-4

1016L
1425L

I100L

820L

2090 OE16 914 600 2X 10-3/2 X 10-4

2090 OE16 950 600 2X 10-3/2 X 10-4

2090 OE16 986 600 2 X 10-3 / 2 X 10-4

2090 OE16 1022 600 2X 10-3/2 X 10.-4

812T

1063T

1275T

720T

L: longitudinal, and T: wansverse direction to final roiling., * Not Fractured

4-63



2.0

1.5

m

1.0
ltl
1¢
1-
¢0

0.5

0

2.5
i I

2T1

2o =
1.5

_: - 2x 10-4s -1

2E2

0 Z
0 0.5 1.0 1.5

I !

2090 AI-Li

AR, 400 psi
2x 10 -3 s-1 &2xl0 -4s -1

51 O=C

- 15

10

5

! 0
2.0 2.5

STRAIN

a=

03
LU
g¢
k"
03

Figure 46. 2090 AI-Li Flow Stress Versus Strain for Duplex Stage Strain Rates.

(-T3 and -OE 16 Tempers)

$C$1181

I

490"C

510*C

530"C

I I
0

I I

2x 10-4s -1

490"C

51 O*C

530"C

2090 AI-Li

AR, L
400 psi

m

Figure 47.

r i

II

0.5 1.0 1.5 2.0 2.5

STRAIN

10

5

0

2090 AI Transverse Flow Stress at 400 psi Back Pressure Versus Strain for Duplex

Stage Strain Rates.

11

LU
I:¢
!--

4-64

m

II

II

H

[]
B

m
II t

m i

B

m_



k..,

=

L

IL

2.0

1.5

1.0

I-

0.5

0
0

I

490*C

510°C

I I I I

2090 AI-Li

AR, 600 psi
2x 10 -3s -1 & 2 x 10 -4s -1

2 x 10-4s -1

2 x 10 -3 s-1

-.,

-10

5

0I i I I I

0.5 1.0 1.5 2.0 2.5 3.0

STRAIN

Figure 48. 2090 AI Transverse Flow Stress at 600 psi Back Pressure Versus Strain for Duplex
Stage Strain Rates.

4,2.1.2.6 Superplastic Cavitation

Tensile samples tested up to strains of 2.0 with and without back pressure were examined

metallographically for evidence of cavitation. The coupons tested in air showed extensive

cavitation at strains of 1.0 while those tested with back pressure (400 psi) up to strains of 2.0 did

not show any indication of superplastic cavitation.

4.2.1.3 8090 Aluminum-Lithium

The 8090 AI-Li material utilized during the study was supplied in the SPF condition from

Alcan Aerospace. Chemical test certification supplied by Alcan on the material is as follows:

Cu Mg Si Fe Mn Zn Zr Li Cr "I5 Ag A1

1.18 0.61 .011 0.04 .001 0.03 0.12 2.35 .001 0.03 Rem

t_
I1.

oi
to
i11

t-
to
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Figure 49. 2090 AI-Li Dynamic Gran Growth with Increase in Strain.
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4.2,1.3.1 MetallurNcal Analysis z

Microstructural evaluation was performed on heat treated samples of the material (refer to

Figure 51: solution heat treated at 968°F for 1 hour, water quenched and artificially aged at 374°F

for 4 hours) in order to reveal the substructures of the material. The as-received material was fine

grained with slightly elongated grains in the final rolling direction. The average grain sizes were

approximately 3.3 x 5.4 x 5.2 I,tm in three directions. Static grain growth was observed to be

moderate for the 8090 A1-Li alloy in the temperatures range of 914 to 986°F.

4.2.1.3.2 Stress-Strain Rate Behavior

Flow stress and strain rate sensitivity (m) measurements are shown versus strain rate in

Figure 52 for 8090-SPF A1-Li material (uniaxial stepped strain rate tests were conducted without

back pressure) for temperatures ranging from 914°F (490°C) to 986°F (530°C). The sigrnoidal

shape of the flow stress versus strain rate curves indicated that the material was superplastic at the

intermediate strain rate. This conclusion is further corroborated by the measurement of strain rate

sensitivity (m) with strain rate. The optimum SPF strain rate is shown to lie within 10-3/second

with a maximum strain rate sensitivity value of 0.6.

4.2.1.3.3 Flow Stress-Strain Data

Uniaxial testing of the 8090 A1-Li material was conducted to determine the optimum

forming parameters for the material (refer to Figure 53). Initial testing briefly compared single

strain rate deformation _th two stage defo_ati0n (refer to Table 22). The results from the brief

comparison yielded increased total SPF elongations with the two stage strain rate deformation

versus the single stage strain rate.

Additional uniaxial tests were performed on the 8090 AI-Li material with the two stage

strain rate deformation condition in order to optimize material forming parameters. The two stage

strain rate tensile samples were initially pulled at a constant strain rate of 2xl0-3/second up to a

strain of 0.72, after which the strain rate was reduced to 2xl0Al/second until failure of the samples

occurred (due to test fixture limitations, samples that did not fail in the range of 1400 to 1600

percent superplastic elongation were removed from the test fixate). The aforementioned two stage

uniaxial tests were performed at temperatures of 878°F to 1022 °F with back pressures of 200,

400, and 600 psi. The results (refer to Tables 23 and 24) showed that the 8090 AI-Li material

exhibited excellent superplastic elongations which exceeded 1275% (in the longitudinal direction)

with back pressures of 600 psi. The transverse samples showed slighdy higher elongations with
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the 600 psi back pressure and lower SPF temperatures than the longitudinal samples (refer to

Table 24). The variation in elongation with test temperature and back pressure are shown

graphically on Figure 54.

4,2.1.3.4 Dynamic Grain Growth

Dynamic grain growth was examined in conjunction with the two stage (duplex) strain rate

forming condition. Grain growth was detected in the 8090 AI-Li material at all forming

temperatures with increases in superplastic strain. The results from the evaluations at 914°F

(490°C) without back pressure and with 400 psi back pressure are shown on Figures 55, 56, and

57. The increase in grain size of the material caused an increase in flow stress as shown in Figures

58, 59, and 60 of flow stress versus SPF strain.

4.2.1.3.5 Cavitation

Superplastic elongations of 8090 A1-Li were dramatically improved (refer to Figure 61)

with the application of back pressure. The 8090 Al-Li alloy exhibited the same type of increase in

superplastic elongations with increase in back pressure as the 7475 Al alloy throughout the test

temperature range for the material. SPF elongations at low to moderate back pressure levels (levels

at or below 400 psi are considered moderate by Rockwell) were optimum for forming temperatures

between 914°F (490°C) and 1022°F (550°C). Intergranular cavitation of greater than 1 percent was

observed in air tested samples (without back pressure) at strain levels as low as 0.6 (refer to Figure

56) while samples tested under back pressures at or greater than 400 psi did not show cavitation at

strains up to 2.1 (refer to Figures 57 and 62). 8090 A1-Li (similarly to 7475 AI) requires higher

back pressure levels to suppress cavitation at lower test temperatures (refer to Figure 61) and

requires less back pressure to suppress cavitation as the forming temperature increases.

4.2.1.4 Weldalite-049 Aluminum-Lithium

Weldalite-049 aluminum-hthium material was developed by Martin Marietta Corp. and

licensed to Reynolds Metals for fabrication. Its early development consisted of various iterations

of the composition in order to obtain a balance of weldability, high strength, and acceptable

toughness. The composition that was examined during this program is shown in the table below.

The evaluation of the material was performed on two shipments of the material.

C-'u Mg Si Fe Mn Zn Zr Li Cr Ti Ag A1

4.47 0.4 0.02 0.06 .001 0.16 1.32 0.39 Ran
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Table 22. Superplastic Tensile Elongations of 8090 AI-Li.
g

mALLOY TMT TEMP PRESSURE STRAIN RATE ELONGATION

(°F) (PSI) (Per Second) (%)
8090 AR 914 400 5 X 10-4 695L

8090 AR 950 400 5 X 10-4 547L

8090 AR 986 400 5 X 10-4 424L

8090 AR 878 400 2 X 10-3 / 2 X 10-4 754L

8090 AR 914 400 2 X 10-3 / 2 X 10-4 863L

8090 AR 914 400 2 X 10-3 / 2 X 10-4 913T

8090 AR 950 400 2 X 10-3 / 2 X 10-4 797T
8090 AR 986 400 2 X 10-3 / 2 X 10-4 796T

8090 AR 878 600 2 X 10-3 / 2 X 10-4 829L

8090 AR 914 600 2 X 10-3 / 2 X 10-4 877L

L: longitudinal, and T: transverse direction to final roiling., AR: as-received

Table 23. Superplastic Two-Stage Strain Rate Longitudinal Tensile Elongations
of 8090 AI-Li Alloy.

[]

W

[]

m

II

i

i

II

ALLOY TMT

8O90 AR

8090 AR
8090 AR

8090 AR

TEMP PRESSURE STRAIN RATE ELONGATION
(°F) (PSI) (Per Second) (%)
878 AIR 2 X 10-3 / 2 X 10-4 450L

878 200 2 X 10-3 / 2 X 10-4 366L

878 400 2 X 10-3 / 2 X 10-4 754L

878 600 2 X 10- 3 / 2 X 10-4 829L

8090 AR 914 AIR

8090 AR 914 200

8090 AR 914 400

8090 AR 914 600

2 X 10-3 / 2 X 10-4 496L

2 X 10-3 / 2 X 10-4 766L

2 X 10-3 / 2 X 10-4 863L
2 X 10-3 / 2 X 10 -4 877L

8090 AR 950 AIR

8090 AR 950 200

8090 AR 950 400

8090 AR 950 600

2 X 10-3 / 2 X 10 -4 555L

2 X 10-3 / 2 X 10-4 760L
2 X 10-3 /2 X 10-4 914L

2 X 10-3 / 2 X 10-4 948L

8090 AR 986 AIR

8090 AR 986 200

8090 AR 986 400

8090 AR 986 600

8090 AR 1022 AIR

8090 AR 1022 200

8090 AR 1022 400

8090 AR 1022 600

2 X 10-3 / 2 X 10-4 548L

2X 10-3/2 X 10 -4 917L

2 X 10-3 / 2 X 10 -4 836L

2 X 10-3 / 2 X 10-4 939L

2 X 10-3 / 2 X 10-4 550L

2 X 10-3 / 2 X 10-4 278L

2 X 10-3 / 2 X 10-4 979L

2 X 10-3 / 2 X 10-4 620L

L: longitudinal direction to final rolling. AR: as-received
Bold Highlight: Selected Forming Parameters
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Table 24. Superplactic Two-Stage Strain Rate Transverse Tensile Elongations of
8090 AI-Li Alloy.

ALLOY TMT II_MP PRESSURE STRAIN RATE ELONGATION

(°F) (PSI) (Per Second) (%)
8090 AR 878 AIR 2 X 10-3 / 2 X 10-4 445T

8090 AR 878 200 2 X 10-3 / 2 X 10-4 365T

8090 AR 878 400 2 X 10-3 / 2 X 10-4 355T

8090 AR 878 600 2 X 10-3 / 2 X 10 -4 1275T

8090 AR 914 AIR 2 X 10-3 / 2 X 10-4 448T

8090 AR 914 200 2 X 10-3 / 2 X 10-4 345T

8090 AR 914 400 2 X 10-3 / 2 X 10-4 913T

8090 AR 914 600 2 X 10-3 / 2 X 10-4 1225T

8090 AR 950 AIR 2 X 10-3 / 2 X 10-4 621T

8090 AR 950 200 2 X 10-3 / 2 X 10-4 666T

8090 AR 950 400 2 X 10-3 / 2 X 10 -4 797T

8090 AR 950 600 2 X 10-3 / 2 X 10-4 952T

8090 AR 986 AIR 2 X 10-3 / 2 X 10-4 652T

8090 AIR 986 200 2 X 10-3 / 2 X 10-4 926T

8090 AR 986 400 2 X 10-3 / 2 X 10 -4 796T

8090 AR 986 600 2 X 10-3 / 2 X 10 -4 1125T

8090 AR 1022 AIR 2 X 10-3 / 2 X 10 -4 485T

8090 AR 1022 200 2 X 10-3 / 2 X 10 -4 264T

8090 AR 1022 400 2 X 10-3 / 2 X 10-4 942T

8090 AR 1022 600 2 X 10-3 / 2 X 10-4 743T

T: Transverse direction to final rolling. AR: as-received
Bold Highlight: Selected Forming Parameters
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4-76



II¢-01_I-T

2.5 I' T T" T I

/ 470_C_ 8090 AL-LI

/ / I AR, 200PSI

2.0 2 x 10 -3 & 2 x 10 -4 s'l

, 1.5

_ 1.0

0 t l
0

15

lo i

5

0
0.5 1.0 1.5 2.0 2.5

STRAIN

Figure 58. Flow Stress Versus Strain for 8090 A1-Li Formed with 200 psi Back Pressure.

r T
8090 AI-Li

AR, 400 psi
2 x 10 -3 & 2x 10 -4s -1

2 x 10 -4 s-1

470"C

490°C

53 _o'c'," 510*C

STRAIN

Figure 59. Flow Stress Versus Strain for 8090 AI-Li Formed with 400 psi Back Pressure

4-77



v

u)
IJJ
rr

m

2.5

2.0

1.5

1.0

0.5

I I

470°C__

J

, 2x 10"4S "1

2x1°'3#'1 __

510°C

0 Z I I

0 0.5 1.0 1.5 2.0

STRAIN

Figure 60.

Figure 61.

8C-0114 -T

I

8090 AL-LI

AR, 600 PSI - 15

2 x 10 -3 & 2x 10 -4 s -1

+o -"
:E

W

5

m

I

i

m

i

i +
i

Flow Stress Versus Strain for 8090 A1-Li Formed with 600 psi Back Pressure.
1500 • I I

8090 AL-LI
2 x 10 "3& 2 x 10"4s -1

l
V _t 490°C
0 • 510°C _ ,

o • s3o°c

_< 1000 - ¢ * 550°C /

=_
o,
I.U

500

0 I I
0 200 400 600

BACKPRESSURE, PS|

Superplastic Elongation Versus Back Pressure for 8090 AI-Li at Various Forming
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4.2.1.4.1 MetallurNcal Analysis
I

The initial lot of Weldalite-049 material procured for the program did not appear to be

superplastic during microstructural evaluation (refer to Figure 63). However, uniaxial testing was

performed on two samples in order to corroborate the microstructural evaluation and verify the

conclusion that the material was not superplastic. Further testing was delayed with the alloy until

SPF quality material could be obtained. Microstructural examination of the second lot obtained for

the program was performed and compared to the material that was observed to be non-superplastic.

The microstructure of the second lot (Weldalite 049-RT72 sheet) was fine grained with a noticeable

banded appearance (refer to Figure 64) which projected a more favorable uniaxial tensile response

than the previous lot. It was unclear as to the reason for the initial lot's non-superplastic

characteristics, but was assumed that a mistake had been made and conventional sheet material had

been shipped for evaluation.

kN

......................... +..... .

Figure 63. Microstructure of Weldalite-049 A1-Li Observed to be Non-Superplastic.
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Figure 64. Microstructure of Weldalite-049 A1-Li Observed to be Superplastic.

4.2.1.4.2 St_p-Strain Rate Testing

Stepped strain rate tests were performed on the two lots of material obtained for the

program. The initial tests (refer to Figure 65 and 66) show the flow stress of the material and the

m-value versus strain rate. The test results from the initial lot of material resulted in the non-

superplastic rating for the material. The flow stress versus strain rate graphs resulting from the

tests with the initial batch of material were linear and did not follow the sigmoidal trend normally

associated with superpIastic materials, and the m-value versus strain rate curves were nearly flat.

The non-superplastic rating was based upon the combination of the stepped strain rate test results,

the presence of extreme necking in the samples during uniaxial testing, and the microstructure of

the as-received material.

The stepped strain rate tests performed on the second batch of Weldalite-049 (x2095 A1-Li)

material received during the program was also evaluated for uniaxial behavior at elevated
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temperature.The flow stressandm-valueversusstrain ratecurvesareshownasFigures67 and

68. The behaviorof the secondlot of materialduringuniaxial superplasticdeformationshowed

thatthematerialwasindeedsuperplasticalthoughtheoptimumforming temperaturefor thematerial

wassignificantlylower thanotheraluminumbasedmaterialspreviouslyexamined.

4.2.1.4.3 Flow Stress-Strain D_ta

The uniaxial testing of the Weldalite 049-RT72 sheet revealed that the optimum parameters

for longitudinal direction testing have generated true strains of up to 2.5. The parameters used for

the longitudinal tests were temperature of 914°F (490°C) with 600 psi back pressure for strain rates

of 3 x 10-4/see. The Long-transverse direction test results at the identical parameters yielded true

strains of 1.6. The anisotropy observed in the SPF constant strain rate tests between L and L-T

directions and the apparent "strain softening" behavior of the material during the uniaxial testing

will require further investigation in order to pinpoint the cause of this behavior and verify its

existence from lot to lot.

The effect of strain rate and coupon orientation on the elongation and flow stress were

examined for the superplastic Weldalite material. It was observed that the maximum elongations

occurred in the longitudinal direction, and in the range of e = 3E -4 and 6E -4 per second (refer to

Figure 69). Flow stress levels were lowest for the coupons tested at slower strain rates and

elongation appeared to be very uniform without significant necking in the test coupons. The higher

strain rates produced good to excellent elongations in the test coupons, but as the strain rate was

increased, the propensity for necking in the coupon increased (refer to the flow stress curve at e --

1E-3 per second). Some anisotropy was encountered during uniaxial testing of the weldalite

material at Rockwell. Prior to fabrication of producibility hardware with the weldalite material,

t_hnical contact was made with Lockheed Aeronautical Systems Company on their recent

experience with the testing and formability of the material. Lockheed did not observe the degree of

anisotropy that was present during the Rockwell evaluation of the material. The disparity in results

from this program and other studies, indicates that the processing of the weIdalite material is still in

its infancy, and that variations in behavior from lot-to-lot will continue to be observed during the

development of the material.

The temperature effects of the Weldalite-049 SPF sheet on the elongation during

superplastic forming are shown in Figure 70. All of the tests were performed at constant strain rate

of 3_-4 per second Under 600 psi back pressure. The elongation was maximized at the forming

temperature of 915°F. Since the material appears to have a very narrow range of optimal
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superplastic behavior, it is recommended that very rigorous thermal control is maintained during

theforming of allstructuralcomponents as loosecontrolwillresultin non-uniform formabilityand

thepropensityforcavitationin the out-of-toleranceregions(referto Figure 70).

4.2.1.4.4 Dynamic Grain Growth

=

L_

r7

U

L

The effects on the superplastic Weldalite-049 material after static thermal exposures of 915

or 930°F for three hours were evaluated in order to determine the reasons for reductions in

elongation to failure for material tested at 930°F. The observation from the test (refer to Figure 71)

was that exposure for the Weldalite-049 material to 930°F resulted in an increase in recrystallized

grain structure and static grain growth over those exposed to 915°F. The amount of static grain

growth observed in the three hour exposure test verified that the material is quite sensitive to

changes in temperature during forming and that thermal control of the samples should be tightly

controlled during part fabrication.

4.2.1.4.5 Su_t_-n'p_lasfic Cavitation

Cavitation in behavior of the supcrplastic Weldalite-049 material was evaluated for material

formed with 10 psi, 200 psi, and 600 psi back pressure (refer to Figure 72) during uniaxial testing.

A back pressure of 600 psi provided the maximum suppression of cavity formation during

elongation. The lower levels of back pressure (200 psi) reduced the formation of cavitation, but

did not eliminate it from areas of high elongation in the samples. The indications observed in the

uniaxial specimens suggest that at low levels of strain required for most parts, that back pressures

between 200 and 600 psi should readily suppress cavitation in formed parts. The hypothesis was

tested during the forming trials for the Weldalite-049 material and is reported in the producibility

section of this rcpo_

4.2.2 PRODUCIBILIT'Y STUDY

The fabrication of producibility pans of 7475 A1, 2090 A1-Li, 8090 A1-Li, and the x2095

AI-Li (Weldalite4349) materials was conducted immediately following completion of the uniaxial

characterization of each material. All of the materials used during the program were formed with

existing tooling into simple pan shapes to ensure proper translation of the uniaxial data into
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Figure 65. Flow Stress and M-value Versus Strain Rate for Initial Batch of Weldalite-049 A1-Li

Sheet, Longitudinal Direction Tested, at 915°F at 600 psi Back Pressure.
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Sheet,Transverse Direction, Tested at 914°F at 600 psi Back Pressure.
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Figure 67. Flow Stress and M-value Versus Strain Rate for Second Batch of Weldalite-049 A1-Li

Sheet, Longitudinal Direction Tested, at 915"F at 600 psi Back Pressure.
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Figure 68. Flow Stress and M-value Versus Spain Rate for Second Batch of Weldalite-049 AI-Li

Sheet,Transverse Direction, Tested at 915°F (490°C) at 600 psi Back Pressure.
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formability data. Optimal forming temperatures and strain rates obtained during the

characterization study (refer to Table 25) were utilized for development of pressure-versus-time

profiles and for establishing thermal stability requirement for the manufacturing environment.

Pressure versus time pmf'tles were generated for the small pans (an example of a cycle is shown as

Figure 73) for each of the alloys utilizing the Rockwell SPF model in conjunction with the

superplastic material parameters developed under this program. The preliminary parts (6" x 6" x

2.5", refer to Figure 74) were formed from each material utilized during the program. The initial

pans formed from 2090 and 8090 AI-Li materials were immediately quenched (utilizing several

different quench rates) upon removal from the tool, stored at 20°F to retard natural aging,

sectioned, and shipped to Washington State University in dry ice storage for inclusion in the heat

treatment evaluation. Large producibility pans (18" x 18" x 6", refer to Figure 75) were also

fabricated from 7475 A1, 2090 and 8090 A1-Li during the program for use during the resistance

spot weld parameter development at General Dynamics and for generation of engineering design

data at Alcoa.

Table 25. Summary of Optimum Superplastic Forming Parameters.

ALLOY

[Forming Temp.
(°F)

Strain Rate

(x 10 -3 s-1)

Flow Stress

(ksi)

Back Pressure

7475AL

950

0.2

2090 AL-LI

960

2.0/0.2

8090 AL-LI

960

2.0/0.2

x2095 AL-LI
WL-049

915

0.6

0.25

400

1.5/0.4

400

1.5/0.3

400

0.85

600

(psi) ....

The work, conducted on the small producibility pans included identification of forming

constraints with the aforementioned materials, actual versus predicted thinning behavior for the

pans, and cavitation within the formed part. Thickness measurements for the small producibility

pans were obtained using a caliper model ultrasonic gauge (IO'autkramer-Branson model CL204).

The schematic thickness measurements (recorded in inches) are shown in Figures 76 through 79.

Cavitation measurements were conducted on the formed 7475 A1, 2090, 8090 and x2095 A1-Li

materials. The cavitation evaluation show the percentage of relative void volume for as-received

versus formed material, along with the effect of percent SPF thickness strain on the relative volume

of cavities (refer to Figures 80 through 82 and 72).
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t I I t

2O 25 30 35

Time (min)

I I

40 45

Pressure Versus Time Profile for x2095 AI-Li Producibility Pan.
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Figure 74. Small Producibility Pans 6" x 6" x Depth were Fabricated for Each
Material Examined During this Program. The Depth of the Tool was .Altered
with the Addition of Inserts into the Die Cavity.
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Figure 77. Thickness Measurements for a 2090 A1-Li Producibility Pan.
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Figure 79. Thickness Measurements for a x2095 A1-Li Producibility Pan.

4-96

m

I

i

II

II

I

J

|

!

i

m
m

m

!
m

II

!!
E

i

|



. J

w

w

w

I

Longitudinal, As-Received Longitudinal, 54% Strain
% Voids = 0.23 % Voids = 0.05

Magnification 100X Magnification 100X
7475 AI Pan 101, to = 0.100"

I8" x 18" x 3" Plain Pan, Back Pressure = 350 psi

Figure 80. Photomicrograph of Cavitation for a 7475 A1 Producibility Pan.
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Magnification IOOX

Figure 81.

Longitudinal, 67% Strain
% Voids = 0.13

Magnification 100X
2090 AI-Li Pan 18, to = 0.090"

6" x 6" x 3" Plain Pan, Back Pressure = 350 psi

Photomicrograph of Cavitation for a 2090 A1-Li Producibility Pan.
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Longitudinal, 34% Strain
% Voids = None

Magnification 100X
8090 AI-Li Pan 107, to = 0.090"

6" x 6" x 3" Plain Pan, Back Pressure 350 psi

Figure 82. Photomicrograph of Cavitation for a 8090 AI-Li Producibility Pan.

4.2.2.1 2090 _d 8090 Aluminum-Lithium
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UniaxiaI SPF test information was used in conjunction with past experience with SPF of

aluminum based materials resulting in selection of the following forming parameters for 2090 and

8090 A1-Li:

Forming Temperature

:::_e :forming temperature range of 950 to 960°F was selected :in order:_ to maintain_ :low: flow stress

levels and to minimize and/or prevent static grain growth, incipient melting, and minimize the

formation of lithium oxide and hydroxides on the surface of the material.

Strain Rate

A _'o stage strain rate (2xl0-3/second for bi-axial strains of 0.2 minimum to 0.5 maximum

followed by 2xl0-4/second for the remainder of the cycle) was selected in order to provide for

maximum elongation in the material, due to dynamic recrystallization at the onset of SPF strain,

and for minimizing manufacturing time without sacrificing structural integrity.
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The materials were hot loaded, and a thermal equilibration time was allowed for prior to the onset

of the forming profile. The thermal control of the platens and tool were controlled during the entire

cycle and recorded through the automated thermal control system during forming. At the

completion of the pressure-time profile, the part was removed from the tool, quenched, and stored

under refrigeration for further evaluation. The formability of both the 2090 and 8090 materials

was excellent. Scale-up for fabrication of structural element was not considered as a problem for

either material.

4.2.2.2 Weldalite-049 (x2095) Aluminum-Lithium

Uniaxial SPF test information was used in conjunction with past experience with SPF of

aluminum based materials resulting in selection of the following forming parameters for x2095 AI-

Li:

Forming Temperature

A forming temperature of 915°F was selected in order to maintain low flow stress levels and to

minimize and/or prevent static grain growth, incipient melting and minimize the formation of

lithium oxide and hydroxides on the surface of the material.

 a.rain_Ba 

A single stage strain rate of 6xl0-4/second was selected in order to maximize elongation in the

material during forming without sacrificing structural integrity.

Ear.malzili 

The material was hot loaded, and a thermal equilibration time was allowed for prior to the onset of

the forming profile. The thermal control of the platens and tool were controlled during the entire

cycle and recorded through the automated thermal control system during forming. At the

completion of the pressure-time profile, the part was removed from the tool, allowed to slow air

cool and evaluated for thinning behavior and cavitation. The formability of the x2,095 A1-Li

material was excellent, although it was less sensitive to gas pressure fluctuations than standard

aluminum materials. The x2095 A1-Li material formability is similar to Ti-6A1-4V but requires

very high level of back pressure to consolidate during forming. Scale-up for fabrication of

structural elements is not considered as a problem for the material.
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4.2.3 TEST MATRIX AND COUPON CONFIGURATION FOR 2090 AND 8090
ALUMINUM-LITHIUM

A data base of mechanical property and corrosion resistance performance of the 2090 and

8090 AI-Li materials procured for this program was generated on formed and non-formed samples.

The test matrix utilized during the program is shown in Table 26. This matrix and testing details

described in this section provide for direct comparison with existing material test data for SPF of

aluminum and other SPF A1-Li materials. A group of the Pre- and Post-SPF material was heat

treated to the condition designated as -T62 prior to testing.

4.2.3.1 Material Processing

Test coupons from post-SPF material were obtained by superplastically forming

rectangular sectioned deep pans; the basic female cavity used to provide the deep pans was 18- by

18- by 6- inches deep. The large fiat walls and base of the deep pans provided the material for the

formed test coupons. The superplastic forming conditions used to fabricated the deep pans were

taken from the characterization tests which were later utilized for fabrication of the structural test

parts during the program. The differential pressurization cycles were calculated using an

experimentally derived relationship between the materials' tensile flow stress and the effective true

strain at the given temperature and strain rate.

The test material (both formed and unformed) was solution heat treated, quenched,

flattened where noted, and artificially aged to a peak -T62 condition. The heat treatment parameters

utilized during the program are outlined Table 27.
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The effective true strains incurred during SPF were determined for the critical areas of each

test coupon from thickness measurements. The effective true strains can be calculated by placing

an etched grid onto the surface of the material prior to forming, and measuring the major and minor

diameters of the etched grid pattern after SPF. The post-SPF grid measurements are then

compared with the etched grid circle diameter before SPF according to the equation.

m

E= 1.155 (El 2 + E22 + E1E2)l_

where (_ is the effective true strain, 81 is the true strain in the major tensile direction and 1_2is the

true strain in the minor tensile direction; i.e., E = In (dl/do) where d 1 = etched grid diameter after

SPF and do = original etched grid circle diameter. In cases where it is not possible to utilize a local
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etched grid pattern, the true thickness strain is determined from thickness measurement using the

equation 83 = In (tl/t0) where 83 is the thickness true strain, tl = the sheet thickness after SPF, and

tO is the original sheet thickness. The thickness true strain is a close approximation to the effective

true strain (E = -83 for equi-biaxial strain and 8 = 1.155 83 for plane strain). The Effective uniaxial

tensile elongations were derived from the effective true strains using the equation:

m
J

E

I

ii

8 = (anti loge 8) -1.
u

Table 27. Material Thermal Processing After SPF Prior to Testing.

Material
I
1

V

2090 A1-Li

8090 A1-Li

Solution
Heat

Treatment

Temperature
f F)

1000

1013

Solution
Heat

Treatment
Tune

(minutes)

30

30

_ench
Media

Water

Water

Artificial Age
Temperature

ca=)

350

3OO

Artificial Age
Tmae

(hours)

20

38 to 40

m
!

|

i

l
I
J

4.2.3.3 Chemical Analysis

Chemical analysis was performed at the surface of the material, and at the center (T/2) plane

via Quantometer analysis. The classifications of the test data are broken down into material

condition: Pre-SPF (unformed but solution heat treated-quenched-artificiaLly aged) and Post-SPF

(formed-solution heat treated-quenched-artificially aged). The goal of the evaluation of the

composi_0n of_e _tedal was to detemdne Whether any changes had occurred in the composition

due to the forming process that could alter the mechanical behavior of the material, or anomalies in

the composition of the material when compared to the maximum and minimums associated with the

registered compositionl The results of the evaluation are shown in Table 28 and 29.

The composition of the 2090 aluminum'lithium material (refer to Table 28) was within the

range of the regi_tei'ed Composition except foi:_e _unt of lithium depletion at the surface of the

matefifl. The _ountof lithium in the Pre'S_F (1.6 _+0.21) Con_tion versus the Post-SPF (1.7 _+

0.09) condition at the surface of the samples was virtually identical. The lithium measured at the

..... center of_es_en (T/2) for the Pre:SPF was Z26 _+0105 and for the Post-SPF material was

2.3 + 0.15; thus it was concluded that Li depletion (approximately 0.42 weight percent lithium for
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the material) did not occur during the forming process, but rather, occurred during the solution heat

treatment of the material prior to artificial aging.

z --
w

W

w

The composition of the 8090 aluminum-lithium material (refer to Table 29) was within the

range of the registered composition. The amount of lithium at the surface of the Pre-SPF (2.16 _+

0.15) condition versus the Post-SPF (2.2 +_ 0.23) condition was virtually identical. The lithium

measured at the center of the specimen (T/2) for the Pre-SPF was 2.4 +_ 0.0 and for the Post-SPF

material was 2.3 _+ 0.18; thus it was concluded that Li depletion (approximately 0.07 weight

percent lithium for the material) was within experimental error for the equipment. Thus it w_

concluded that forming and/or solution heat treatment of the material did not seriously alter the

composition of the alloy.

4.2.3.4 Ambient Tensile

Ambient room temperature tensile tests were conducted in accordance with ASTM E8

specification. Test specimens were prepared in two directions: one parallel with the sheet rolling

direction (L) and perpendicular tO the sheet rolling direction (L-T). Subscale test specimens were

used as shown in Figure 83. The shortened (1.0- inch) gauge length was selected in order to

minimize the effects of thickness variations in the post-SPF material.

L

w

Figure 83. Tensile Test Coupons - Smooth ('K T = 1.0) with no Center hole -
Notched (KT = 2.5) with Center Drill-hole.
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4.2.3.4.1 Smooth Tensile Testing

m

N

The smooth ambient temperature tensile tests were performed on the 2090 and 8090 AI-Li

materials in the -T62 condition. The processing history of the materials are shown in Table 27.

The ambient tensile data for 2090 AI-Li is represented in Table 30 and 31 with the specimen

orientation and forming strain. Median tensile values are shown at the bottom of the table along

with the standard deviation. The data was evaluated for possible reductions in tensile properties

with increase in superplastic elongation. It was observed (refer to Table 32) that the ambient

tensile behavior does not change significantly with superplastic strain for either the longitudinal or

transverse specimens. Graphical representation of the ambient tensile properties of 2090 AI-Li is

shown in Figures 84 through 88 versus superplastic effective true strain.

I

l

m

ii

J

I

Table 30. Pre- and Post-SPF Longitudinal
for 2090 AI-Li.

Orientation Ftu

L
I
I
I
1
I
I
I
I
I
i
!
I
I
I
I
I
I
I
I
I
V

Mean
STD Dev.

(ksi)
66.9
63.3
64.8
64.7
63.2
62.7
61.2
65.0
64.2
61.7
63.2
65.7
60.2
60.5
62.8
63.1
64.0
63.3
63.3
62.8
61.2
63.3

63.2
1.6

Fry
(ksi)
55.8
54.1
52.8
52.4
52.5
53.6
51.5
52.2

50.3
48.5
49.1
54.9
48.3
46.4
50.0
50.2
53.6
50.6
50.3
50.1
48.3
52.3

51.3
2.4

Elong.
(%)
4.0
3.0
3.0
5.0
4.0
4.0
4.0
5.0
5.0
5.0
5.0
3.0
5.0
4.0
3.0
4.0
5.0
3.0

4.0
3.0
4.0
4.0

4.0
0.8

4-106

Ambient Tensile Results

Effective
True Strain

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.176

E

(msi)
i2.9
I3.2
13.3
1 1.4
11.3
13.5
10.0
I4.3

0.189
0.193
0.240
0.273
0.279
0.285
0.297
0.301
0.303
0.319
0.330
0.349
0.365
0.378

12.6
16.1
10.1
11.2
9.8
12.6
11.2
14.6
12.5
11.0
17.6
10.8
12.0
10.2

0.194 12.373
0.145 2.007
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Table 31. Pre- and Post-SPF Transverse Ambient Tensile Results
for 2090 AI-Li

Orientation

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Mean

STD Dev.

Ftu

(ksi)

65.10

61.90

65.00

62.40

63.40

62.30

62.80

60.80

61.20

60.20

60.80

63.00

61.80

62.10

62.80

61.60

63.10

62.70

62.60

61.50

61.50

61.10

60.10

59.10

62.04

1.41

Fry Elong.

(ksi) (%)

52.70 6.00

52.80 5.00

54.60 8.00

50.90 4.00

51.40 7.00

50.10 8.00

51.20 10.00

47.20 7.00

46.70 7.00

45.80 7.00

48.60 8.00

49.70 10.00

48.20 9.00

47.50 9.00

48.90 9.00

48.00 9.00

48.50 9.00

50.50 7.00

48.50 9.00

47.50 9.00

48.80 8.00

48.20 9.00

47.80 7.00

47.80 7.00

Effective

Tree Strain

0.000

0.000

0.000

0.000

0.000

0.215

0.219

0.227

0.230

0.240

0.241

0.246

0.253

0.254

0.272

0.273

0.276

0.277

0.301

0.306

0.318

0.324

0.366

0.439

E

(msi)
iml

13.0

12.7

13.6

10.9

11.2

14.0

14.7

11.6

13.9

9.5

13.0

9.7

10.6

11.1

I1.3

11.0

10.7

12.6

11.8

17.2

11.1

11.5

11.3

11.7
I III

49.25 7.83 0.220 12.07

2. i 4 1.49 0.125 1.72
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Table 32. Pre- and Post-SPF Mean Ambient Tensile Results for 2090 AI-Li.

i

Orientation

L
I
1
1
I
I
I

V

T

I

e

I

I

I
I

I

V

i

Ftu

(ksi)
63.3
64.2
63.2
60.5
63.1
63.3
63.1
62.3

63.4
62.6
60.8
62.0
62.8
62.1
61.3
60.1
59.1

Fty

(ksi)
52.8
50.3
49.1
48.3

50.2
50.6
50.2
50.3

52.7
50.7
47.2
47.9
48.7
48.0
48.5
47.8
47.8

Elong_6n
(%)
4.0
5.0
5.0
4.0
4.0
3.0
3.5
4.0

6.0
9.0
7.0
9.0
9.0
9.0
8.5
7.0
7.0

Effective
True Strain

0.000
0.189
0.240
0.279
0.301
0.319
0.340
0.372

0.000
0.217

0.240
0.254
0.275
0.304
0.321
0.366
0.439

E

(ms:)
12.9
14.3
10.1
11.2
12.5
11.0
14.2
11.I

12.7
14.4
11.6
10.9
11.2
14.5
11.3
11.3
11.7

[] x xq
X

[] Ftu-L

x Ftu-T

0.000 0.050 0.100 0.150 0.200 0.250 0.300 01350 0.400 0.450 0.500

Effective True Strain

Figure 84. 2090 A1-Li Ultimate Tensile Strength Versus Effective True Strain.
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Figure 85. 2090 AI-Li Tensile Yield Strength Versus Effective True Strain.

80.0

70.0

60.0

--. 50.0
olllt

_ 40.0

30.0

20.0

10.0

U Ftu-L

x Ftu-T

• Fty-L

A Fty-T

0.0

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

Effective True Strain

Figure 86. 2090 AI-Li UItimate Tensile and Yield Strengths Versus Effective True Strain.
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The ambient tensile data for 8090 AI-Li is represented in Table 33 and 34 with the specimen

orientation and forming strain. Median tensile values are shown at the bottom of the table along

with the standard deviation. The data was evaluated for possible reductions in tensile properties

with increase in superplastic elongation. As with the 2090 data, it was observed (refer to Table 35)

that the ambient tensile behavior of the 8090 AI-Li material does not change significantly with

superplastic strain for either the longitudinal or transverse specimens. Graphical representation of

the ambicnt tensile behavior of 8090 A1-Li is shown in Figures 89 through 93 versus superplastic

effective true strain.

Table 33. Pre- and Post-SPF Longitudinal Ambient Tensile Results
for 8090 AI-Li.

Orientation

L
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

V

Mean
STD Dev.

Ftu

(ksi)
63.9

65.6

66.7

67.2

66.6

66.7

65.9

68.0

67.6

66.4

67.6

62.3

66.5

64.0
67.9
65.1
67.6
64.8
66.5
65.7
66.8
62.7

66.0
1.6

Fry
(ksi)

Elong.
(%)

55.0 3.0
54.8 5.0
54.9 5.0
54.8 4.0
55.0 4.0
54.9 4.0
54.7 4.0
58.0 3.0

57.6 3.0
57.7 3.0
55.5 4.0
50.8 3.0
57.1 2.0
58.4 1.0
55.6 4.0
57.8 3.0
58.2 5.0
57.3 2.0
58.3 3.0
51.5 5.0
56.2 5.0
54.4 4.0

55.8 4.0
2.1 1.0

Effective

True Strain

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.105

0.116
0.123
0.127
0.134
0.139
0.141
0.155
0.161
0.165
0.171
0.181
0.183
0.198
0.236

0.11
0.08

E

(msi)
11.6
11.I
11.4
12.1
11.7
10.8
10.9
12.4
13.0
12.0
12.5
13.8
11.1
12.7
14.8
I1.7
11.2
12.5
13.4
12.4
12.4
11.0

12.11
1.02

4.2.3.4.2 Notche4i Tensile Testing

Notched tensile tests were carried out as described for the smooth tensile tests, however,

the sub-scale test coupons contained a 0.105-inch diameter drill-hole in the center of the gauge

length (as shown in Figure 83). The ratio of hole diameter to coupon width was determined for a

KT = 2.5 from "Stress Concentration Factors," R.E. Peterson, John Wiley and sons, 1974.

Center-hole specimens were used rather than sharp edge notch specimens for improved
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reproducibility in the thin sheet material, lower specimen costs, and to closely represent a typical

stress concentration in airframe structures (i.e., fastener holes) which are clearly understood for

prediction of structural behavior.

The 2090, and 8090 -T62 open hole tensile specimens were solution heat treated,

quenched, and artificially aged according to the parameters laid out in Table 27. The results from

the testing of the notched tensile specimens are shown in Tables 36 through 39. The 2090

specimens did not show a trend towards decrease in notched tensile strength with superplastic

strain for either the longitudinal or transverse specimens. A constant notch yield ratio was

obtained for the 2090 specimens with forming strain (approximately 1.18) which implies that there

is no effect on the notch tensile data by the SPF process.

Table 34. Pre- and Post-SPF Transverse Ambient Tensile Results
for 8090 AI-Li

Orientation

T
I

J
I
I
I
I
I
I
I

Ftu

I

I

I

I

I

I

I

I

I
I

I

V

Mean

STD Dev.

(ksi)
60.1
61.0
60.2
58.6
59.9
60.8
60.0
57.8
65.2

66.5
65.4
65.6
66.5
65.7
66.7
65.7
61.4
66.6
64.7
59.4
61.4
63.8

Fty

.(ksi)
47.7
48.1
47.7
46.8
47.4
48.0
48.0
47.0
52.3
52.2
52.9
53.4
52.4
53.2
52.3
52.2
47.4
52.3
50.3
45.8
49.1
51.0

62.9
3.0

Elong.
(%)

ix

8.0
8.0
8.0
4.0
6.0
7.0
7.0
5.0
5.0
5.0
5.0
5.0
7.0

5.0
7.0
6.0
5.0
7.0
8.0
6.0
8.0
5.0

Effective
TmeSvain

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.095
0.107

0.108
0.108
0.113
0.118

0.127
0.144
0.161
0.165
0.167
0.198
0.232
0.235
0.259

E

(msi)
10.9
11.1
11.2
10.6
11.3
11.2
I1.4
12.9
12.3
12.1
11.3
13.0
12.3
13.7

ill i

49.9 6.0 0.11
2.5 1.0 0.09

12.7
15.5
10.8
13.2
10.6
12.4
11.I
11.2

11.95
1.21
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Table 35. Pre- and Post-SPF Mean

Orientation

L
I
I
I
I
I
I
I

V

T
I
I
I
I
I
I
I

V

Ambient Tensile Results for 8090 AI-Li.

Ftu Ft-),

(ksi) ......... (ksi)
66.6 54.9
67.8 57.8
67.0 56.6
64.0 57.1
66.5 56.7
66.2 57.8
66.1 54.9
66.8 56.2
62.7 54.4

60.1 47.7
57.8 47.0
65.4 52.3
66.1 52.9
66.2 52.8
65.7 52.2
64.7 50.3
60.4 47.5
63.8 51.0

Elongation

4.0
3.0
4.0
2.0
4.0
4.0
4.0

5.0
4.0

7.0

5.0

5.0

6.0

6.0

6.0

8.0

7.0

5.0

Effective

True Strain

0.000
0.111
0.125
0.139
0.158
0.168
0.182
0.198
0.236

0.000
0.095
0.108
0.116
0.136
0.165
0.198
0.234
0.259

E

(msi)
11.4
13.0
12.0

13.0
13.0
12.0
13.0
12.4
11.0

11.0
12.9
12.0

13.0
13.0
13.0
10.6
12.0
11.2

t.,

80.0

70.0

60.0

"- 500

_ 40.0

-' 30.0

20.0

10.0

0.0

0.000

0

* Ftu-L

o Ftu-T

0.100 0.200 0.300

Effective True Strain

Figure 89. 8090 A1-Li Ultimate Tensile Strength Versus Effective True Strain.
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Figure 92. 8090 AI-Li Tensile Elongation Versus Effective True Strain.
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Figure 93. 8090 A1-Li Tensile Modulus Versus Effective True Strain.
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The 8090 specimens did show a slight trend towards a decrease in notched tensile strength

with increased superplastic strain for the longitudinal specimens. The median notch yield ratio

obtained for the longitudinal 8090 specimens was 1.14 while the median obtained for the

transverse specimens was 1.18. One explanation for the disparity in the values between the

longitudinal specimens 0ow to high forming strain) could be the low copper content of some of the

material. One low Cu post-SPF specimen exhibited a 6 ksi decrease in the notched tensile strength

as compared with the non-formed material (material with strain of 0). This low copper effect may

also be attributed to the lower response that some of the ambient smooth tensile specimens showed

during testing, however, since this program was aimed at acceptability of the properties and not in

an in-depth analysis of each characteristic, it is sufficient to say that the notch yield behavior of the

material was acceptable, and that no serious deficiencies were found during the testing.

Table 36. 2090 Notched

Orientation Ftu

L

L

L

L

L

L

Mean

STD Dev.

Table 37. 2090

Orientation

T

T

T

T

T

T

Mean

STD Dev.

Tensile

(ksi)

Strength, Longitudinal Direction.
i i

Ftu

Nominal

(ksi)

Notch

Yield

Ratio

48.00 61.00 1.19

48.00 61.00 1.19

46.20 58.80 1.15

47.20 59.80 1.17

49.30 61.40 1.20

48.00 60.90 1.19

47.78

1.03

Notched Tensile Strength,

Ftu Ftu Notch

(ksi)

45.70

46.50

46.10

46.30

44.20

47.00

Nominal Yield

(ksi) Ratio

57.90 1.18

59.10 1.20

58.60 1.19

58.90 1.20

56.20 1.14

59.80 1.21

Effective

True Strain

0.000

0.000

0.270

0.319

0.213

0.213

I I ii

45.97 58.42

0.97 1.25

60.48 1.I8 0.17

0.98 0.02 0.14

Transverse Direction.

Effective

True Strain

0.000

0.000

0.361

0.185

0.232

0.229

1.19 0.17

0.03 0.14
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Table 38. 8090 Notched Tensile Strength, Lon_,itudinal Direction.

Orientation Ftu

(ksi)

49.50

51.10

51.20

51.60

50.90

46.40

L

L

L

L

L

L

Mean 50.12

STD Dev. 1.96

Ftu

Nominal

(ksi)

Notch

Yield

Ratio

Effective

True Strain

62.80 1.12 0.000

64.90 1.16 0.000

65.20 1.17 0.190

65.50 1.17 0.177

64.70i 1.16 0.13058.80 1.05 0.205

63.65 1.14 0.12

2.56 0.05 0.09

Table 39. 8090 Notched Tensile Strength, Transverse Direction.

Orientation Ftu Ftu Notch Effective

Nominal Yield True Strain

(ksi) (ksi) Ratio

T

T

T

T

T

T

45.20

45.70

46.70

47.30

48.40

45.70

Mean 46.50

STD Dev. 1.20

57.40 1.15 0.000

58.00 1.16 0.000

59.40 1.19 0.229

60.10 1.20 0.171

61.50 1.23 0.147

58.20 1.17 0.179

59.10 1.18 0.12

1.53 0.03 0.10

Cryogenic Tensile

Smooth tensile tests were conducted in accordance with the ASTM E8 specification at

temperatures of approximately -60 °F to -320 °F (using industry conditions for cryogenic

temperature testing two temperatures, both -60 and -320 should be used). Test coupons were as

shown in Figure 83 for KT = 1.0.

Smooth tensile tests were performed for 2090-T62 and 8090-T62 aluminum-lithium

material at cryogenic temperatures. The cryogenic test results are shown on Table 40 and 41.

Several of the coupons failed outside the middle of the gage length (denoted by F or D) which has

been attributed to improper alignment of the grips and possible incomplete deburring of the tensile

specimens prior to testing. The remaining test specimen and set-ups were re-examined prior to
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testing in order to eliminate the problem. The elongations of the specimens that did fail in the gage

length were in the range of 9 to 13 percent, which is an improvement of the ambient tensile test

results of 4 to 5 percent shown in the ambient tensile section of this report.

Table 40. Cryogenic
8090-T62 Pre-

Alloy
Temper

2090-T62

¢,

64

44

6(

6_

66

6¢

6_

66

8090-T62

C6

64

6,

66

66

64

6,

66

64

Coupon
I.D.

316-1-L1

316-1 -L2

316-1-T1

316-1-T2

322-L1

325-L2

324-L3

323-L4

322-T1

325-T2

32,¢-T3

323-T4

315-3-L1

315-3-L2

315-3-T1

315-3-T2

361-L1

361-L2

359-L3

359-/_,4

359-T1

359-T2

359-T3

359-T4

Temperature Smooth Tensile Test Results for 2090-T62 and
and Post-Superplastic Formed Sheet at -60°F.

SPF
Condition

Pre-SPF

Pre-SPF

Pre-SPF

Pre -S PF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Specimen
Thickness

(in)

0.09045

0.09045

0.09010

0.08995

0.06675

0.07000

0.07220

0.06710

0.06395

0.07065

0.07185

0.07035

0.08730

0.08680

0.08705

0.08715

0.08035

0.07870

0.07230

0.07315

0.07040

0.07195

0.07885

0.07600

Test

Temp.
(°F3

-60

-60

-60

-60

-60

-60

-60

- 60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

-60

Ftu Fty El

_ksi) (ksi) (%)

68.1 54.0 4F

67.5 54.0 4F

65.3 52.9 10

65.1 52.9 10

67.1 52.3 4F

67.9 51.5 5F

66.6 51.3 4F

66.8 51.3 5F

62.9 50.4 6F

63.9 50.8 9

61.5 47.8 9

63.0 49.6 10

70.4 55.5 7D

71.4 56.0 9

62.1 48.4 13D

62.0 48.3 13

68.8 55.2 6F

68.7 56.1 6F

62.6 50.1 3F

65.5 50.9 6-F

59.1 46.5 8I)

60.5 43.3 7F

60.4 47.1 7F

60.8 47.5 8F

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

D = Coupon Failed Outside of Middle of Gage Length.
F = Coupon Failed at Fillet.

Effective
True Strain
Thickness

0

0

0

0

0.2989

0.2513

0.2204

0.2936

0.3417

0.2421

0.2252

0.2463

0

0

0

0

0.0909

0.1117

0.1965

0.1848

0.2231

0.2014

0.1098

0.1466
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Table 41. Cryogenic Temperature Smooth Tensile Test Results for 2090-T62 and

8090-T62 Pre- and Post-Superplastic Formed Sheet at -320°F.

Alloy
Temper

8090-T62

C4

C_

D = Coupon

316-1-L1

316-1-L2

316-1-T1

316-1-T2

322-L1

325-L2

324-L3

323-LA

322-T1

325-T2

324-T3

323-T4

315-3-L1

315-3-L2

315-3-T1

315-3-T2

361-L1

361-I.,2

359-L3

359-LA

359-T1

359-T2

359-T3

359-T4

SPF
Condition

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Specimen
Thickness

(in)

0.09055

0.09050

0.09025

0.O9045

0.06765

0.06875

0.07290

0.06765

0.06060

0.07155

0.06970

0.06915

0.08710

0.08680

0.08695

0.08710 -

0.07730 -

0.07900

0.06920 -

0.07570

0.07040

0.07305

0.07970

0.07690

Failed Outside of Middle of Gage Length.

Test

Temp.
(°F)

- 320

- 320

- 320

- 320

- 320

- 320

- 320

- 320

- 320

- 320

- 320

- 320

320

320

320

320

320

320

320

320

320

320

320

320

Ftu Fty E1

(ksi) (ksi) (%)

83.0 57.3 8F

85.1 56.6 12D

78.3 57.6 18

78.2 57.3 18

82.8 55.0 9F

79.8 54.5 8D

83.6 54.3 10F

83.3 54.8 10F

75.7 53.7 15F

77.1 55.7 17

75.1 52.9 17

76.9 54.5 13F

87.4 58.7 10D

88.0 58.8 17D

74.6 52.4 17D

74.8 59.1 83

85.0 59.8 10F

87.2 54.7 9F

82.4 54.9 8F

81.7 51.3 12F

73.4 50.8 13F

73.4 52.1 12F

74.1 49.4 12F

72.6 47.5 8F

Effective
True Strain
Thickness

0

0

0

0

0.2989

0.2513

0.2204

0.2936

0.3417

0.2421

0.2252

0.2463

0

0

0

0

0.0909

0.1117

0.1965

0.1848

0.2231

0.2014

0.1098

0.1466

F = Coupon Failed at Fillet.

The overall strengths and elongations increased with the decrease in temperature which is

typical of aluminum materials. However, the ultimate and yield strengths of the coupons did
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decrease slightly with increasing forming strain. The graphical results of yield strength versus

SPF thickness strain are shown as Figures 94 through 97.

4.2.3.6 Compression

The compressive yield strength was determined in accordance with the ASTM E-9

specification for 2090-T62 and 8090-T62 Pre- and Post-Super'plastic formed sheet The

compressive strength coupons were machined to a uniform thickness to prevent buckling or

improper failure of the coupons during testing. Past experience with the testing of formed SPF

material has resulted in the practice of machining prior to testing to prevent premature failure in the

coupons due to load discontinuities. The results from the compressive tests are shown in Table

42.

4.2.3.7 Exfoliation Corrosion

Exfoliation corrosion test were carried out in accordance with ASTM G85 Annex 2

MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittence Spray) which is the most

representative accelerated corrosion test for aluminum-lithium alloys. 12 The exfoliation test results

are shown in Figure 98 with appropriate test ratings. All of the 2090 specimens received an

exfoliation rating of A (mild exfoliation). Three of the four specimens exhibited ordy minor pitting

and one specimen exhibited some pit blistering. All of the 8090 specimens received an exfoliation

rating of C (severe pitting) and all experienced pit blistering. Protection of these materials for long

periods of times in corrosive environments is recommended.

4.2.3.8 Stress Corrosion Cracking

The stress corrosion cracking testing performed under ASTM G44 is designed to expose

the specimen to alternate immersion in 3.5 percent NaC1 solution while under stress 13. It is used

to test the environmental effects of moderate to highly loaded structure that is allowed to dry

between exposures (which Could simulate the effects of long term storage of a cryogenic tank in a

seacoast environment). The alternate immersion test utilizes a 1 hour exposure cycle which

_cludes 10 minutes in the aqueous solution, followed by a 50 minute drying period. The cyclic

exposure is continued 24 hours per day for typically 20 to 90 days, depending upon the resistance

of the alloy to corrosion by saltwater.
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Figure 94. Cryogenic Tensile Response of 2090-T62 A1-Li at -60°F.

r

L

80

70

60

50

40

30

20

10

0

0.000

I

0.05O

Figure 95.

[] [] []

X X X

A a _
&

I I I I

0.100 0,150 0.200 0.250

Effective True Strain

Cryogenic Tensile Response of 8090-T62 AI-Li at -60°F.

[] L-Fro

X T-Ftu

• L -Fty

A T -Fty

I

0.300

4-121



"- 60 • z_z_ . A [] Ftu-L

40 A t3 Ftu-T U

i

o , , , • , , , , , : .. |!
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Effective True Strain [] [
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Table 42.

Temper

2090-T62

8090-T62

66

Coupon

Compressive Strength of 2090 and 8090 Pre- and Post-Superplastie
Formed Sheet Heat Treated to -T62.

SPF Compressive
I.D. Condition Yield Strength

316-2-L1

316-2-L2

316-1-T1

316-1-T2

360-L1

360-L2

360-T1

360-T2

315-2-L1

315-2-L2

315-2-T1

315-2-T2

357-L1

359-L2

357-T1

359-T2

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Specimen
Thickness

(in)

0.058

0.058

0.091

0.091

0.066

0.058

0.052

0.060

0.088

0.088

0.088

0.088

0.063

0.047

0.046

0.059

Specimen
Width

(in)

0.625

0.624

0.623

0.622

0.625

0.625

0.624

0.625

0.623

0.622

0.622

0.621

0.625

0.625

0.625

0.625

* Specimens were machined to achieve uniform thickness.

(ksi)

58.5

58.0

56.6

56.4

59.6

58.3

61.0

59.1

58.7

59.1

51.6

51.9

57.0

57.2

55.3

55.1

Compressive
Ave. Yield

(ksi)

58.3

56.5

59.0

60.0

58.9

51.8

57.1

55.2

The significance of the testing for this application is to provide valid comparisons for the

superplastic formed 2090 and 8090 aluminum-lithium materials with other aluminum materials

used in current launch systems. Although the alternate immersion test is an accelerated test, it is

considered to be representative of certain natural exposure conditions. However, it is not intended

to predict the performance of the material under specialized chemical environments where other

failure modes may dominate. In several high strength aluminum alloys (specifically the copper

bearing alloys with minimum cross sectional areas), severe pitting can interfere with the initiation

of stress-corrosion cracks and can complicate failure mode identification. 1'_ Since the panels used

for the program were to be loaded in both the N X and Nxy directions and exposed to severe

environmental conditions both in storage and prior to launch, it seemed advisable to investigate the

SCC resistance of the materials into the test matrix.
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RATING, P

2090 POST-SPF 2090 POST-SPF

r

S-NO_ 590323-3 S-NO. 590322-1

,IG A RATING - P A

S-NO, 590324,1

RATING - P A

E-SPF 8090 POST-SPF 8090_POST-SPF

S'NO. 590315-1 S-NO. 590319-3

RATING PB C

S-NO, 590319-3

RATING - PB C

S-NO. 590320-3

RATING PB

RATINGS:

• A= MILD

C = SEVERE

P = PITTING

PB = PiT BLISTERING

EXFOLIATION
(MASTMAASIS)

(2 WEEKS)

Figure 98. Exfoliation Corrosion Results for 2090 and 8090 AI-Li Using the MASTMAASIS
Test Methods.
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For this group of test specimens, the coupons were fabricated from two sources;

superplastic formed material and non-formed or as-received but thermally processed material. All

of the test coupons were heat treated to a -T62 condition prior to testing, thus effectively

eliminating all residual stress that may have been in the materials due to forming or mill processing.

The 2090 and 8090 AI-Li materials were tested oriented in the long-transverse direction for both

the stressed (loaded in a spring fixture) and unstressed condition. The coupons that were placed

under stress (six of each alloy) were loaded to 50 percent of their yield strength (26 ksi for 2090

AI-Li, 25.5 ksi for 8090 AI-Li) in the test fixture. No failures occurred during the thirty day

exposure for either alloy under stressed or unstressed conditions as shown in Table 43.

t

= ,

! -=-:W

A portion of the SCC test results were performed with material that had been straightened

after solution treatment and quenching to eliminate coupon distortion. The superplastic formed

8090 Ai-Li coupons (identified by effective true strain values greater than zero) were the only SCC

coupons not straightened. The use of check and straightening for elimination of distortion caused

by solution heat treatment and quenching is a standard practice with sheet metal pans in

production. Thus, the use of straightened coupons would be representative of areas in a final

structural component. Theoretically, material that had been straightened would create areas of

moderate localized stress in the coupon (depending upon the amount of warpage in the specimen)

decreasing its SCC resistance. However, there was essentially no difference in the SCC results for

any of the coupons or in the post-SCC tensile response of the straightened versus non-straightened

8090 A1-Li material. The results led to the conclusion that the amount of strain placed into the

system due to a minimal check and straighten operation was not sufficient to aggravate the SCC

response in sheet metal.

Table 43. SCC Alternate Immersion Test Results for 2090 and 8090 Sheet.

SCC of"2090 SCC of 8090

Unstressed Stressed Unstressed Stressed

F/N Day_ F/'N Day5 FfN Day_ F/N Day_

0/3 .... 0/6 .... 0/3 .... 0/6

4.2.3.9 Residual Tensile Strength (Post-SCC)

The post-SCC smooth room temperature tensile coupons for the 2090 and 8090 sheet

materials were tested and the results are tabulated in Table 44. The variables tracked are the

amount of strain introduced into the part due to superplastic forming (including the non-formed
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condition), and the level of stress used on the coupons during SCC testing. The percent of

property loss was computed by comparing the material properties of the post SCC tensile tests with

the smooth tensile properties of the materials taken from the identical pan or sheet that had not been

exposed to the NaCl solution.

Table 44.

Aaoy/
Temper

2090
2090
2090
2090
2090
2090
2090
2090
2090

8090
8090
8090
8090
8090
8090
8090
8090
8090

Notes:

Smooth Room Temperature Tensile Testing After SCC Exposure of
2090 and 8090 Pre- and Post-SPF Sheet.

Stressed/
Unstressed

Stressed
Stressed
Stressed
Stressed
Stressed
Stressed

Unstressed
Unstressed
Unstressec

Stressed
Stressed
Stressed
Stressed
Stressed
Stressed

Unstressed
Unstressed
Unstressed

Specimen
Thickness

(in.)
0.0902
0.0908
0.0901
0.0674

0.0703
0.0704
0.0665
0.0656
0.0692

0.0883
0.0885
0.0885
0.0799
0.0788
0.0755
0.0782
0.0796
0.0817

Specimen
Width

(in.)
0.503
0.503
0.503
0.503

0.502
0.503
0.503
0.503
0.502

0.502
0.502
0.502
0.502
0.501
0.502
0.501
0.501
0.502

Tensile Properties @ Room
Ftu

(ksi)
58.5
59.3
59.9
62.2

56.5
57.5
57.2
57.4

59

57.4
57.5

57
57.3
57.9
59.1
55.9
58.8
57.4

Change
(%)
-8.6
-7.3
-6.4
-0.2
-9.3
-7.4

-4
-5.6

-5

-5
-4.8
-5.6
-3.5
-2.5
-0.5
-5.9

-1
-3.4

Wemperatu_"
Fty Change

(ksi) .....(.,.%)
51 -4.5
50 -6.4

52.9 -0.9
56.1 12
48.6 -3
48.6 0.6
48.2 0.8
48.4 -0.4
49.3 2.1

44.6 -7.1
44.4 -7.5
44.3 -7.7
46.6 1.7
46.1 0.7
45.9 0.2
46.2 0.9
47.1 2.8
46.4 1.3

Effective

True
Strain

0
0
0

0.289
0.247
0.246
0.303
0.316
0.263

0
0
0

0.097
0.11

0.153
0.118

0.1
0.074

_08--_-'0--_-_ri_S__i, 209-"ff9-'0"m-_'erial"-aT'ff'ff'_"s'ed_si_rial e_

to 3.5% NaCI Solution Alternate Immersion for 30 Days Both Stressed and Unstressed

Specimen thickness was measured at the minimum thickness of the gauge section.

The tensile yield and ultimate strengths of 2090 and 8090 are shown after exposure to an

alternate immersion 3.5 percent NaC1 environment for 30 days in Figures 99 and 100. The results

are plotted versus thickness strain (0 strain values are for material that was in the as-received

condition and heat treated).

The primary reason for conducting residual strength tests is to discriminate between alloys

and conditions with small differences in the ultimate tensile strength if:m) caused by increased rates

of stress corrosion crack growth rates and hence longer cracks in one set of specimens. Since

there is not any significant difference in Ftu between either the pre- and post-SPF or stressed and
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U unstressed specimens in either alloy, it is concluded that the superplastic forming process does not

affect the SCC behavior of the material.

i k_-

,e

L

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

X

, :_ x AXX

! I

0.000 0.050 0.100

Figure 99.

A A _A

x Ftu - T

A Fry - T

I I I I I I

0.150 0.200 0.250 0.300 0.350 0.400

Effective True Strain

Post-SCC Residual Tensile Strength of 2090-T62 AI-Li.

w

80.0

70.0

60.0

•m 50.0
.,g

40.0
t._

-- 30.0

20.0

10.0

X

A

I x Ftu-T

[ A Fty-T

0.0 I ! I I I I I I I I

0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200

Figure 100.

Effective True Strain
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4.2.3.10 Fracture Toughness

Fracture toughness were tested using the center crack tension (m (T)) coupon test for stable

crack growth under static loading with a measurement of strain compliance with load increase. The

R-curve test is described in ASTM STD E561-78T and B-646.

specimen configuration that was utilized during this program. The specimens were oriented in the

L-T direction with a non-formed thermally processed specimen as a control, and the remaining

specimens removed from formed pans which were heat treated prior to testing.

12.0"

©

122"

<!)

9.56"

Figure 101. Center Crack Tension Specimen Configuration.

Fracture toughness has been used as a key property for utilization of a number of aluminum

W

Figure 101 shows the test
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alloys in the Aerospace industry. In spite of all of the interest in this rating of materials several

different test techniques and configurations exist and no single method exists to cover a number of

the product lines or dimensional ranges involved. Plane-strain fracture toughness, Ki¢, is widely

used in the Aerospace industry principally for the high strength alloys. Valid measurements for

Ki¢ can be made only for relatively thick sections, however test methods have been developed for

measuring the "toughness" of sheet sections (previously mentioned as ASTM STD E561-78T and

B-646).

Generally, for either quality assurance or material release purposes, the critical (or

maximum) s_ss intensity factor for monotonically load_ center-slotted panels is recommended as

the index of fracture toughness. This value is designated K c for purposes of this practice.

Specimen widths less than 15 or I6 in_c_ _ us_l-for quality assurance or lot release testing, but

since the maximum, or critical stress intensity factor is dependent upon the interaction of the crack-

driving force which is a function of specimen _dth and the crack'resistance curve, the resulting
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value is both specimen width and thickness dependent. The value for Kc decreases with

decreasing specimen width, all other factors being identical.

The fracture toughness (Kc) values at a maximum load are shown in Table 45. There was

substantial scatter in the results, however there was no direct evidence of an effect on the

toughness of the material due to the SPF process. The 8090-T62 Kc values were slightly higher

than those measured for 2090-T62, however, Kc is only one point on the R-curve and that general

observation may not apply to the entire R-curve. The test data are enclosed as Appendix D.

Table 45.

Alloy - Temper

2090-T62

Ambient Fracture Toughness for 2090-T62 and
Materials in the L-T Direction, to = 0.090.

SPF Condition Fracture

Toughness
Kc (ksi_in)

Non-Formed 48.3
52.0

Formed 39.4
52.8

8090-T62 Non-Formed

Formed

52.9
66.8
60.3
48.8

8090-T62 AI-Li

Effective
True Strain

(8)
0
0

0.250
0.207

0
0

0.I55
0.208

4.2.3.11 Fatigue Crack Propagation

w

w

w

Fatigue crack propagation rate tests (da/dn) were carried out according to ASTM E647-

78T. Center-cracked tension specimens (four-inches wide) were used, as shown in Figure 101.

Single specimens were tested with crack growth rates in the range 10-7-10-4 da/dn with three

different stress ratios: R = +0.1, +0.3, and +0.5. The specimens were all oriented in the L-T

direction with as-received and formed materials heat treated to the -T62 condition. Testing was

conducted in ambient laboratory air at 10 Hz. The resulting R-curves are shown as Figures 102

through 109.

4.2.3.12 Smooth and Notched Axial Fatigue

Smooth and notched fatigue tests were carried out at constant amplitude in axial tension-

tension. A minimum/maximum stress ratio (R) of +0.1 was used for all cases aceording to ASTM

E-466 specification. Tests were performed in laboratory air at ambient temperature using
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specimens fabricated with a continuous radius as shown in Figure 110. This specimen form was

chosen so that the position of fatigue crack initiation and growth was predictable even in the

presence of thickness variations and internal cavitation. Specimens were sectioned in both the L

and T directions.

4 7.75" _i

r

Figure 111.

' ! +
-- --C) 0.105" D -- 1.0"

' I +

Smooth (Kt = 1.02) and Notched (Kt = 2.5) Fatigue Specimens With Continuous
Radius.

The results from the smooth and notched axial fatigue testing of 2090-T62 and 8090-T62

SPF material are shown in Tables 46 through 49. The tables include information describing

specimen processing sequence, SPF condition, and effective true forming strain in addition to the

test stress and cycles to failure.

Smooth and notched axial fatigue results for the 2090-T62 material are shown in Figures

111 and 112. There was no observable effect on the fatigue life due to forming strains of

appro_tely 50%. The pre-SPF smoo_ L specimen at the 28 ksi stress level failed prematurely

at 200,000 cycles due to a surface defect crack (approximately 0.015" wide by .010 to 0.015"

deep) that had not been detected prior to testing.

Smooth and notched axial fatigue results for the 8090-T62 material are shown in Figures

113 and 114. Again, there was no observable degradation in fatigue life due to the superplastic

forming process. There was little or no difference in the smooth fatigue lives of 2090-T62 and

8090-T62. The notched fatigue performance (net stress) showed that there was tittle difference

between the notched faugue performance of 809Oand 2090 $PF material. All but tlu'ee of the

8090 and eight of the 2090 fatigue specimens were flattened after solution heat treatment. The

flattening wouldbe expected to alter the fatigue response primarily through changes in tensile

properties caused by strain enhanced precipitation strengthening. However, there was no evidence
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Table 46. Smooth Fatigue Testing of 2090-T62
•" Lon_tudinal

iRma i

Condition Fatigue Stress Eft. True

Cycles Level Strain

(ksi) (e)

40 0.000

9.3E+O4 40 0.234

8.9E+04 40 0.000

5.8E+O4 40 0.220

4.6E+05 30 0.000

5.9E+04 45 O. 152

1.1E+05 45 0.000

6.2E+04 45 0.000

2.0E+05 28 0.000

1.1E+06 28 0.219

1.4E+05 40 0.236

6.7E+04 45 0.310

1.3E+07 28 0.307

1.1E+07 28 0.220

6.2E+04 45 0.237

F're-SPF 1.5E+05

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Fh-e-SPF

Pre-SPF

Fh'e-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post- SPF

Post-SPF

AI-Li, L and T Orientations.

Comments

Re-SHT, Flattened

Re-SHT, Flattened

SHT

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SlIT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened, Radius Edge F

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened

Condition

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Tva/lsversc

"Fatigue Stress Eft. True

Cycles Level Strain

(ksi) (e)

1.3E+07 28 0.207

1.1E+05 40 0.194

4.9E+04 45 0.330

4.4E+05 28 0.301

1.7E+07 28 0.000

1.3E+07 28 0.176

2.5E+05 28 0.000

5.1E+04 45 0.304

1.5E+05 45 0.000

4.2E+04 45 0.261

2.6E+05 45 0.000

6.1E+04 40 0.264

1.4E+05 40 0.000

8.8E+04 40 0.230

1.6E+05 40 0.000

Comments

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened

SHT, Flattened

SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened Did Not Fail

!Re-SHT, Flattened

!Re-SHT, Flattened

!SHT

SHT, Flattened

Pre-SPF

Re-SIlT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

SHT



Table 47. Notched

Condition

Fatigue Testing of 2090-T62
Longitudinal

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

i Post-SPF

Post-SPF

Condition

AI-Li, L and T Orientations.

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Pre-SPF

Post-SPF

Post- SPF

Post-SPF

PosI-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Post-SPF

Fatigue Stress Eft. True Comments

Cycles Level Strain

(ksi) (e)

2.7E+05 19 0.000 SHT

1.5E+05 19 0.000 Re-SHT, Flattened

8.2E+04 25 0.000 Re-SHT, Flattened

7.0E+04 25 0.000 Re-SHT, Flattened

2.9E+04 38 0.000 rSHT

4.9E+04 38 0.000 SHT

].6E+05 19 0.189 Re-SHT, Flattened

7.1E+04 25 0.203 Re-SHT, Flattened

1.5E+04 38 0.207 Re-SHT, Flattened

3.5E+05 19 0.209 Re-SHT, Flattened

7.6E+04 25 0.220 Re-SHT, Flattened

2.7E+05 19 0.229 Re-SHT, Flattened

2.0E+04 38 0.251 Re-SHT, Flattened

2.3E+04 38 0.332 Re-SHT, Flattened

9.4E+04 25 0.355 Re-SHT, Flattened

Transverse

Fatigue Stress Eft. True

Cycles Level Strain

(ksi) (e)

2.1E+05 15 0.000

2.7E+05 15 0.000

1.6E+05 20 0.000

1.8E+05 20 0.000

7.1E+04 25 0.000

3.6E+04 30 0.000

2.3E+05 19 0.309

2.4E+05 19 0.204

4.4E+05 19 0.256

5.0E+04 25 0.219

7.0E+04 25 0.279

7.1E+04 25 0.222

1.1E+04 38 0.201

1.3E+04 38 0.241

1.8E+04 38 0.220

Comments

Re-SHT, Flattened

Re-SIlT, Flattened

Re-SIlT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SIrF, Flattened

Re-SHT,

Re-SHT,

Re-SHT,

Re-SIlT,

Flattened

Flattened

Flattened

Flattened

SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened
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Table 48. Smooth Fatigue

Condition Fatigue

Cycles

Pre-SPF 6.6E+4

Post-SPF 1.1E+5

Pre-SPF 7.8E+4

Post-SPF 2.5E+5

Pre-SPF 3.3E+4

Post-SPF 7.8E+4

Pre-SPF 5.7E+4 i

Post-SPF 1.1E+5

Pre-SPF 1.1E+7

Post-SPF 1.2E+6

Pre-SPF 1.5E+7

Post-SPF 1.1E+7

Post-SPF 1.3E+5

Post-SPF 5.6E+4

Post-SPF 7.4E+5

Stress

Level

(ksi)

40

4O

4O

40

45

45

45

45

28

28

28

28

4O

45

28

[Condition Fatigue Stress

Cycles Level

(ksi)

Pre-SPF 2.8E+5 40

Post-SPF 1.3E+5 40

Pre-SPF 2.7E+5 40

Post-SPF 1.5E+5 40

Pre-SPF 7.1E+4 45

Post-SPF 9.4E+4 45

Pre-SPF 7.9E+4 45

Post-SPF 1.0E+5 45

Pre-SPF 1.1E+6 28

Post-SPF 1.2E+6 28

Pre-SPF 7.4E+5 28

Post-SPF 8.3E+5 28

Post-SPF 1.8E+5 40

Post-SPF 5.9E+4 45

Post-SPF 4.9E+5 28

Testing of 8090-T62
Longitudinal

Eft. True

Strain

(e)

0.000 Re-SHT, Flattened

0.236 Re-SHT, Flattened

0.000

0.189 !Re-SHT, Flattened

0.000

0.174

0.000

0.280

0.000

0.227

0.000

0.190

0.103

0.129

0.309

Transverse

Eft. True

Strain

(a)

0.000

0.115

0.000

0.257

0.000

0.237

0.000

0.292

0.000

0.099

0.000

0.077

0.067

0.219

0.193

AI-Li, L and T Orientations.

Comments

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened, Did Not Fail

Comments

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

IRe-SHT, Flattened
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Table 49. Notched Fatigue Testing

Condition Fatigue Stress

Cycles Level

2.7E+,4

3.0E+4

2.8E+5

3.1E+5

7.8E+5

6.6E+5

3.0E+4

3.1E+4

3.3E+5

5.1E+5

1.1E+7

1.1E+7

4.3E+4

5.4E+5

1.3E+6
I I

(ksi)

30

30

20

20

15

15

30

30

20

20

15

15

30

20

15

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

I:h'e-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Post-SPF

Post-SPF

Post- SPF

=

Fatigue

Cycles

4.0E+4

4.0E+4

4.2E+5

5.4E+5

1.1E+7

1.0E+7

3.7E+4

5.3E+4

2.3E+5

4.9E+5

2.6E+6

1.1E+7

4.8E+4

3.7E+5

2.3E+6

Styess

Level

(ksi)

30

30

20

20

15

15

3O

3O

20

20

15

15

3O

2O

15
,. ,.,,

[Condition

of 8090-T62

Longitudinal

Eft. True

Strain

(e)

AI-Li, L and T Orientations.

Comments

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened

0.000

0.285

0.000

0.219

0.000

0.205

0.000

0.250

0.000

0.208

0.000

0.180

0.237

0.173

0.273

Transverse

Eft. True

Strain

(e)

Comments

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Re-SHT, Flattened

Re-SHT, Flattened

Re-SHT, Flattened, Did Not Fail

Did Not Fail

Re-SHT, Flattened

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Post-SPF

Pre-SPF

Po st -S PF

Pre-SPF

Post-SPF

Pre-SPF

Post- S PF

Post-SPF

Post-SPF

Post-SPF

0.000

0.232

0.000

0.261

0.000

0.156

0.000

0.117

0.000

0.089

0.000

0.076

0.080

0.236

0.166

Re-SIlT, Flattened, Did Not Fail

Re-SHT, Flattened, Did Not Fail

Did Not Fail
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of to suggest that any difference in fatigue lives exists between specimens which had undergone

flattening and those that had not been flattened. Also, there was no observable difference between

specimens that had been solution heat treated once, and those that were re-solution heat treated.

4.2.3.13 Bearing Strength

7

i zi

1[:1

.-

w

= =

Pin-type bearing tests were conducted according to ASTM E238-68 for both the 2090 and

8090-T62 material systems. Although it seemed unlikely that fasteners would be used in the

cryogenic tank, mechanical fastening was evaluated as a back-up for resistance spot-welding for

attachment of a non-integral intermediate hoop frame to the caps of the stiffener members. The

results from the tests axe shown as Tables 50 and 51.

Table 50. Bearing Properties of 2090 Pre- and Post-Superplastic Formed Sheet
Heat Treated to -T62.

Orientation e/D Bru Bry Effective Failure

True Strain Type

(ksi) (ksi)

L 1.5 84.00 71.60 0.000 1

L 1.5 81.20 68.70 0.000 1

L 1.5 80.00 62.90 0.251 2

L 1.5 79.80 62.70 0.248 2

L 2 104.40 87.10 0.000 2

L 2 109.30 93.80 0.000 2

L 2 106.40 83.10 0.213 1

L 2 100.30 79.60 0.213 ! __

T 1.5 80.20 72.70 0.000 l

T 1.5 83.90 73.80 0.000 1

T 1.5 82.80 69.90 0.237 1

T 1.5 80.70 72.00 0.260 1

T 2 101.40 85.60 0.000 1

T 2 102.90 88.30 0.000 1

T 2 96.30 83.40 0.237 2

T 2 97.50 79.60 0.232 1

Failure Type: 1 = Shear, 2 = Shear-Tension, 5 = Crushing
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Table 51.

4.2.3.14

Bearing Properties of 8090 Pre- and Post-Superplastic Formed Sheet
Heat Treated to -T62.

Orientation E/D Bru Bry Effective Failure

True Strain Type

L

L

L

L

L

L

L

L

T

T

T

T

T

T

T

T

Shear Failure Type:

(ksi) (ksi)

1.5 81.50 70.70 0.000 1

1.5 84.00 70.80 0.000 1

1.5 79.20 64.60 0.104 5

1.5 79.90 68.70 0.159 5

2 104.20 87.90 0.000 1

2 102.20 87.60 0.000 1

2 101.90 82.00 0.165 5

2 100.00 83.50 0.190 5

1.5 79.30 68.90 0.000 5

1.5 79.50 69.50 0.000 1

1.5 78.60 66.40 0.248 5

1.5 78.80 67.60 0.206 1

2 98.10 88.00 0.000 I

2 100.50 86.80 0.000 1

2 96.20 82.20 0.173 1

2 97.60 83.00 0.265 1

1 = Shear, 2 = Shear-Tension, 5 = Crushing

Blanking shear was performed using 4 in. x 4 in. panels and tested according to the Alcoa

punch shear test. The blanking shear tests provide for shear values through the thickness of the

sheet materiai (in the case of puncture). The blanking shear specimens were machined on one side

to accommodate the test equipment (thickness _<0.064 inches) and the test was performed on the

non-machined surface. The tests were conducted for 2090-T62 and 8090-T62 aluminum-lithium

materials and the restflts are shown in Table 52. The results did not reveal any significant

differences =between the shear strength of the Pre- and Post-SPF sheet for either 2090-T62 or

8090-T62 aluminum-lithium materials.

4.2.4 POST-SUPERPLASTIC FORMING HEAT TREATMENT OPTLMIZATION FOR 2090
AND 8090 ALUMINLrM-LITHIUM

The A1-Li based alloys have been shown to offer highly desirable properties for the

aerospace industry, particularly in the reduction of density and concurrent increase in the elastic

modulus, leading to significant improvements in the specific modulus over the more conventional

A1 alloys. The development and application of these alloys, however, have been found to be
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significantlychallenged by a number of technological difficultieswhich have included the

achievement of high strength with sufficient ductility for smJctural applications.

Table 52. Blanking Shear Properties of 2090 and 8090 Pre- and Post-
Superplastic Formed Sheet Heat Treated to -T62.

Alloy
Temper

2090-T62

¢1

66

66

c_

8090-T62

Igg

6_

Coupon
I.D.

316-3-BS1
316-2-BS2
316-2-BS3

316-2-BS4
324-B S 1
323-BS2
323-BS3
323-BS4

315-1-BS1
315-2-BS2
315-2-BS3

315-2-BS4
357-BS1
357-BS2
357-BS3
357-BS4

SPF
Condition

Pre-SPF
Pre-SPF
Pre-SPF
Pre-SPF
Post-SPF

Post-SPF
Post-SPF

Post-SPF
Pre-SPF
Pre-SPF
Pre-SPF

Pre-SPF
Post-SPF
Post-SPF
Post-SPF
Post-SPF

Specimen
Thickness

0.0615
0.0613
0.0598
0.0588
0.0584
0.0606
0.0571

0.0578
0.0599
0.0619
0.0606
0.0620

0.0618
0.0585
0.0581
0.0613

Shear

Strength
0¢si)
31.3
31.8
32.0
29.3
31.4
28.3
32.1
33.1
31.3
31.8
32.0
29.3
31.4
28.3
32.1
33.1

i

* Specimens were machined on one side only and tested with the machined

Shear

Strength
Ave. (ksi)

31.10

31,22

33.40

32.50

surface facedown.

Historically, thermomcchanical processing of aluminum and aluminum-lithium alloys has

been utilized to provide for a balance of strength and ductility for conventional product forms.

However, with the advent of superplastic forming of aluminum and aluminum-lithium materials as

a fabrication methodology for producing low cost net-shape structures, alternate thermal conditions

had to be utilized to achieve peak strength for the material in its final form. Superplastic forming

(SPF) does not lend itself to stretching a completed part before aging for attainment of maximum

strength. SPF processing, by its nature, involves forming of complex shapes at temperatures well

in excess of those used for aging or annealing of the alloys (structural complexity can be increased

fax beyond conventional forming methods with the use of the SPF process). The formed

configuration must then be solution heat treated, water quenched, and aged in order to attain peak

strength or a -T62 condition in the material prior to use.

A past effort was conducted on superplastically formed 8091 A1-Li structures in order to

establish optimized thermal treatments after forming 15.]6. Solution heat treatment (SHT) and

artificial aging (AA) treatment parameters were established which met program goals, and were

considered suitable for the processing of structures for aerospace applications. While the strength
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levelsproducedwerenotashigh asthoseobtainedwith pre-straining( a-T8 condition),theywere

nonethelessconsideredsuitablefor usein theapplicationof thehigh specific stiffnessalloy. The
heat treatment resulting from this study involved solution treatment after forming, water
quenching,andisothermallyagingto peakstrength.

Subsequentinterestemergedin the potential for SPFprocessing2090 and 8090AI-Li

alloys. The interestwasbasedon materialavailability, production of superplasticsheet,andthe

desireto eliminatethe solutionheattreatment(SHT) of the formedpart from the manufacturing

process.The eliminationof theSHT from themanufacturingprocesswasanticipatedto minimize
part distortion, solutedepletion,andprocessingstepsafter forming. The aimof the studywas to

developa thermalprocessingprocedurefor thealloyswherebythepartcould bequencheddirectly
from the forming processand artificially agedprior to trimming without a sacrifice to material

properties. Thepartswould be formed,quenched,artificially agedandtrimmed prior to useasa
structuralelementon theAdvancedLaunchSystem(ALS).

4.2.4.1 HeatTreatmentOptimizationTestMatrix andExperimentalProcedures

The optimization of the heattreatmentfor 2090 and 8090 examined the strengthening
responseof thematerial with different solutionheat treatment temperatures,quenchrates,and

agingpractices.Theissueof outof tool quenchwasexaminedasareplacementfor solutionheat

treatment-quenchprocessingof the formed parts to minimize distortion, solute depletion,and
reduceoverall cost during fabrication of the SPFparts. The evaluationof the heat treatment

parametersfor the SPF-processedmaterialswasconductedin two chronologicalstages:Stage1

andStage2. An outlineof theapproachusedin thesestagesis presentedbelowandin Tables 53

and 54 for Stage 1 and Stage 2 respectively. The initial screening of solution treatment and aging

temperature was conducted using hardness testing, and conf'u-mation of eight selecied heat

treatment cycles was then conducted using tensile tests. The objective of Stage 2 was to further

isolate and verify the best solution treatment and age (STA) process, and then study the effects of

quench on the resulting properties of the most promising STA heat treatment.

Stage 1 (SPF Material, 8090 Alloy and for 2090 Alloy)

1) Characterization of the microstmcture: Optical microscopy and Transmission Electron
Microscopy (TEM). This work was done to predict the Post-SPF heat treatment response
of the material and to determine the precipitation reactions that are facilitated during the heat
treatment process.

2) Differential _ermal Analysis (DTA) of both alloys in order to establish the solvus and
solidus temperatures.
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3) Establish baseline hardness values" Solution heat treatment (established by DTA analysis)

followed by a water quench (to maximize strengthening potential), and either a natural age
(NA) for 4 to 6 weeks or an artificial age (A.A) for up to 100 hours.

4) Evaluation of effects on hardness of different quench rates: Solution heat treatment

(established by DTA analysis) followed by either a water quench (WQ), still or slow air
cool (SAC), or a forced air cool (FACT), and finally artificially aged to peak hardness.

5) Evaluation of effects on hardness of different SHT Temperature: Three solution heat

treatment temperatures (including the SPF temperature) will be evaluated at the optimum
artificial age (established during item 3) for 3 to 100 hours of age.

Table 53. STAGE 1 Test Matrix for Unrecrystallized and Post-Formed 8090 and
2090 Aluminum-Lithium Alloys.

Differential Thermal Analysis (DTA_: Establish solvus and solidus temperatures.

Determine suitable SHT temperature range. Selection of TI, '1"2, and T3 below based upon DTA
results.

Solution Heat Treatment Evaluation:
SHT: TI T2 T3

QUENCH: WQ WQ WQ
SAC SAC SAC
FAC FAC FAC

Natural Age: to 4 weeks to 4 weeks to 4 weeks
Hardness Tests: 36 36 36

Art. Age: Tla T2a T3a Tla T2a T3a Tla T2a T3a
2hr 2hr 2hr 2hr 2hr 2hr 2hr 2hr 2hr
4hr 4hr 4hr 4hr 4hr 4hr 4hr 4hr 4hr

8hr 8hr 8hr 8hr 8hr 8hr 8hr 8hr 8hr
24hr 24hr 24hr 24hr 24hr 24hr 24hr 24hr 24hr
48hr 48hr 48hr 48hr 48hr 48hr 48hr 48hr 48hr
76hr 76hr 76hr 76hr 76hr 76hr 76hr 76hr 76hr
lOOhr lOOhr lOOhr lOOhr lOOhr lOOhr lOOhr lOOhr 100hr

Hardness Tests: After each thermal exposure and screen the hardness response for down-selection
of the eight best cycles for tensile evaluation.

A range of the optimized heat treatment parameters was evaluated for the 2090 and 8090

AI-Li alloys in both the as-received and superplastically formed (SPF) conditions. The heat treat

response of the as-rolled material (unformed, fine-grain material) was first established in order to

baseline the thermal processing response of the SPF alloy to elevated temperature straining.

Identical solution treatment and aging parameters were imposed on the unformed and deformed
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samples in order to ascertain their effectiveness on an unrecrystallized and on a dynamically

recrystallized microstmcmre.

Hardness tests were initially utilized to determine those solution heat treatment (SHT) and

aging parameters which would yield the highest values for the as-rolled materials. Selection of the

thermal processing parameters for continuation of the study were based upon the initial results on

the unrecrystallized material. Verification of the heat treatment hardness response was conducted

with formed and thermally processed material. The final evaluation of the thermal processing

response was performed through measurement of the resulting strength and ductility properties

which were conducted with smooth sub-scale tensile testing.

Stage 2 (SPF Material, 8090 Alloy and for 2090 Alloy)

Optimization of the best post-formed heat treatment processes for each material and

generation of tensile data for prediction of behavior after thermal processing of formed materials.

Table 54. STAGE 2 Test Matrix for Unrecrystallized and Post-Formed
8090 and 2090 Aluminum-Lithium Alloys.

Solution Heat Treatment Evaluation:

[SHT: T1 T2 T3
(SPF) (545°0 (560°C)

QUENCH: WQ WQ WQ

Artificial Age: 4 T, t combinations
established in Stage 1

Tensile Tests: 8 8 8

Ouench Rate Evaluation:
SHT: T1 T1 T1

Quench: Water Forced Air Cool Slow Air Cool

Artificial Age: 4 T, t combinations
established in Stage 1

Fundamentals: Optical, SEM, and TEM analysis to elucidate mechanisms. Specimens and
parameters to be selected based on results of hardness and tensile tests.

Recommend Heat Treatment Parameters: Heat treatment processing parameters will be identified
as a result of all test data.
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4.2.4.1.1 Materials

The 2090 and 8090 A1-Li alloys utilized in this study were produced by Alcoa and British

Alcan respectively. The alloys were specifically processed for superplastic forming at the mill. The

approximate chemistry (in weight percent) of the alloys are as follows:

Li Cu Mg Zr Fe

8090 2.8 1.3 0.7 0.12 0.05 0.02 Bal.

2090 2.2 2.7 --- 0.1 0.06 0.04 Bal

The unrecrystallized materials were utilized in lft 2 sheets and the superplastically formed

materials were obtained from rectangular, "box-shaped, flat-bottomed test pans that had been

exposed to different cooling rates after superplastic forming (SPF). The SPF test pans were

formed at 510°C (950°F) using a back pressure of 350 psi to prevent cavitation and were cooled by

water quenching, static air cooling, and forced air cooling to provide for an evaluation of the

quench rate effects on on the age hardened properties. The formed and quenched materials were

packed in dry ice and stored under refrigeration to prevent natural aging of the material prior to

evaluation.

4.2.4.1.2 Heat Treatment Evaluation
Solution Heat Treatment

Initially, differential scanning calorimetry analysis was conducted using a Perldn-Elmer

Delta Series differential scanning calorimeter (DSC) on both as-received materials to obtain

information of suitable temperature range for solution treatment without encountering incipient

melting. All DSC analysis was conducted using a scanning rate of 5°C (9°1 =) per minute. The

DSC measurements were made to assist in identifying the potential range of temperatures suitable

for solution treatment, especially the temperature at which incipient melting would be expected.

Subsequently, solution heat treatment'of both alloy samples were performed at four selected

temperatures (510°C (950°F), 530°C (986°F), 545°C (1013°F), and 560°C (1040°F)) in order to

determine the optimum hardening response at a specific SHT temperature. All solution treating

was conducted in air using a Marshall cylindrical tube furnace with temperature control maintained

to within + 2°C (3.6°1:').

Since the SPF forming temperature for 2090 and 8090 (510°C (950°F)) was selected as a

solution heat treatment during the study, SPF parts were quenched directly from the forming
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operation and evaluated without any subsequent solution heat treatment process. The form and

quench procedure was considered to be of particular interest to the program since it would

potentially eliminate a post-formed solution heat treatment and quench from the manufacturing

process, which would translate itself into cost savings from both re-work due to distortion and

through savings from number of processing steps after forming. The reported low quench

sensitivity of the 8090 alloy in particular was instrumental in stimulating this approach and it

seemed worthwhile to assess the response of the 2090 alloy to the same process.

_tUlzaLand Artificial Aging

After the solution heat treatment, natural and artificial aging studies were conducted on

both alloys under unformed and deformed conditions. The strengthening kinetics of the

alloys during different artificial aging were monitored using Rockwell Superficial Hardness

tests (30T scale). Hardness testing was also conducted on the naturally aged samples.

Initially the artificial aging temperatures used for the study were 120°C (248°F), 150°C

(302°F), I80°C (356°F), and 210°C (410°F) in order to maximize the data obtained

through the analysis, however, subsequent evaluations included 165°C (329°F), and

195°C (383°F) in order to better determine the optimum aging temperature. The samples

were exposed to the aging temperatures for various times with hardness measurements

taken periodically. The artificial aging time was limited to 100 hours for practical

manufacturing reasons, with the intent to identify a suitable aging process for times under

48 hours. All isothermal artificial aging treatments were conducted in air using the same

Marshall cylindrical tube furnace as was utilized for the solution heat treatment evaluation.

Effect of the Cooling Rate After SHT and SPF

For the as:received materials, the effect of the cooling rate on mechanical properties after

various SHT temperatures was examined. Hardness tests were conducted following artificial

aging at 150°C (302"F) and 180°C (356°F). A computer controlled Nicolet 4094A digital

oscilloscope was utilized to measure the cooling rate. For both air cooling and slow air cooling

tests, a hole was drilled in the specimens for inserting a thermocouple. For the slow cooling rate,

two pieces of A1 sheet of lmm thickness were wrapped around the test specimens and the

specimens were then air cooled.

For the SPF_materials, the ° effect of the cooling rate on mechanical properties after

superplastic forming was also addressed. After the pans were superplastically formed, they were
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cooled in air using a fan for fast air cooling, room air cooled for the slow air cooling study, and

water quenched. As soon as the pans were cooled to ambient temperature, they were stored in a

freezer to prevent naawal aging prior to any direct artificial aging. Initial evaluation was conducted

by hardness testing, and final assessment of selected heat treatment parameters was conducted by

tensile testing.

4.2.4.1.3 Mechanical Property Testin_
Hardness Testing,

Initially, the strengthening kinetics of both alloys in the as-received and SPF conditions

during different thermal cycles were monitored entirely through Rockwell superficial hardness tests

(30T scale) conducted according to ASTM standard El8. Each data point was determined as an

average of at least 5 measurements of hardness. For the as-formed materials, in order to minimize

the hardness scatter caused by uneven thickness or specimen warpage, a small base or anvil was

utilized on the hardness tester. The surface of each specimens was ground to remove the oxidation

and alloy depleted layer which could reflect different properties than the bulk. After the screening

tests (combination of solution heat treatment and artificial aging) were completed, the optimum

thermal cycles based on the hardness results were selected for ambient temperature tensile tests for

both alloys in the as-received and SPF processed conditions.

Tensile Testintz

All tensile specimens were machined to the ASTM standard B557 (sub-sized specimens,

1.25 inch gage length) and tensile testing was conducted on an Instron series 2150

servomechartical testing. Tensile specimens for the SPF-processed materials were oriented in both

longitudinal (rolling) and transverse (90 ° to roiling) directions for dcterhaining the anisotropy of

strength. A strain gage extensometer was employed to facilitate determination of the elastic

modulus (E) and yield strength (o0_2). Additional quantities determined from these tests include the

ultimate tensile strength (Oult) and percent elongation at failure. A Model 2 FAM X-Y recorder

was utilized for recording the tests data. Due to the thickness variation of the tensile specimens for

the _-SPF materials, three measurements of cross-sectional area on each specimen were made in

order to accurately determine the yield and ultimate strength.

Tensile test specimens were tested in the as-formed surface condition (without any removal

of the oxide layer), since it would be representative of SPF parts. It is recognized that there could

be surface oxidation and some related alloy depletion. However, removal of such a surface
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condition would require additional operations and costs, and the data developed without redressing

the surface would represent results of the lower cost processing with maximum applicability to the

program requirements.

4.2.4.1.4 Microstrucn_ Evaluation

Optical, transmission and scanning electron microscopy were utilized to evaluate the

microstrucmm corresponding to various thermal treatments.

Ootical Metallo__raphy

Optical metallographic specimens were prepared using a cold mounting technique followed

by electrochemical etching for 40 seconds in Barker's etch (7 ml HBF4 and 200ml H20)at 20mV

to create an optical active anodizeA surface. The microstructures were examined under polarized

light on an Olympus MG optical metallurgical microscope.

Transmission Electron Microscopy

Foils for transmission electron microscopy (TEM) were made using a Metal Thin Jet

Thinner with 10% nitric acid in methanol solution cooled to -20°C (-4°1 ") by dry ice. A thinning

duration of approximately 1 minute was utilized with a current of 60mA and a voltage of 16 V.

TEM observations were conducted using a Hitachi H-600 microscope with an _celerating voltage

of 100 KeV adjusted for bright field imaging. Additional TEM work was performed on a Phillips

CM-30 operated at 300 KeV for weak field imaging (for structures at precipitate interfaces

including dislocations), bright field and dark field imaging to aid in precipitate imaging.

Scanning Electron Microscopy

Samples for manning electron microscopy were cut directly from the tensile test specimens.

The fracture surfaces for different thermal conditions were ex_ed to determine _e:fracture

mode using a computerized JsM _ scanning electron _scope operating under 20KeV with

a working distance of 39 mm. Back matter eI_n manning technique was utilized to examine the

thickness of the depleted layer due to SPF processing.
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4.2.4.2 Results for Unrecrystallized Materials
4.2.4.2.1 Microsmacture

_L

The unrecrystallized alloys (as-received or unformed SPF materials) were evaluated in

order to obtain basic information on the alloy as it had been received and thermally processed. The

post-formed microstructure would then be compared to the unrecrystallized material in order to

determine what effect, if any, the difference in elevated temperature strain had on the

microstructure after thermal processing. The microstructure of the as-received materials are shown

in Figure 115a (optical) and Figure 115b (TEM). As can be seen from these figures, the material

contains a relatively high defect density in the form of dislocation tangles and some cell structure.

This condition is similar to that observed for most superplastic A1-Li alloys containing Zr.

4,2,4,2.2 Differential Scanning Calorimetry_ (DSC')

The results of DSC scans conducted on the unrecrystallized materials are shown in Figure

116 and 117 (for 2090 and 8090 alloys respectively). The heat flow (heat capacity) versus

temperature curves in Figure 116 and 117 are interpreted in terms of endothermic peak (due to

dissolution reaction) and exothermic dips (due to precipitation reactions) superimposed on the heat

capacity of the aluminum rich solid solution, including previously formed precipitates. The DSC

results are particularly useful in indicating suitable temperature range for solution heat treatment

without encountering incipient melting. The critical temperatures found for the incipient melting

were 575°C (1067°F) for 2090 alloy and 592°C (1097°F) for 8090 alloy.

The alloys appear to undergo some static recrystallization on solution treating at 510°C

(950°F) and above, as can be seen in Figure 118. However, there is some evidence of residual

banding, indicating that the static recrystallization did not develop a uniform distribution of

equiaxed grains of high misorientation angle.

4.2.4.2.3 SHT + Natural A_ne

Figure 119 shows hardness curves that illustrate the natural aging behavior of the as-

received 8090 and 2090 A1-Li alloys following four different SHT temperatures. The SHT time

was one hour followed by a cold water quench. It appears that initially, the as-quenched hardness

of the 2090 alloy is higher than that of the 8090, presumably the result of greater solid solution

hardening resulting from the greater alloy content. Subsequent natural aging resulted in hardness

levels for the 8090 as high as, or higher than, those for the 2090 alloy. It is also appears that there

is about a 30 hour incubation period before the hardness begins to rise for the 8090 whereas
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Figure 115. Microstructure of the as-received 2090 alloy: a. optical
micrograph showing the unrecrystallized, heavily worked Structure and b,
TEM photograph showing the heavily dislocated structure. The microstructure
of the 8090 alloy was similar to that shown above.
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Figure 116. Results of the differential scanning calorimetry conducted on the
as-received 2090 alloy. Results indicate a solidus temperature of approximately
586°C (1087°1:).
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Temperature (C) i i

as-r_eive.d 8090 alloy. Results indicate a solidus _mperamre of approx_nat_ly

593°C (1099°F).
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Figure 118. Optical micrographs of the a. 8090 alloy and b. 2090 alloy after
solution heat treatment at 510°C (950°F ") for 1 hour followed by a water quench.

Banding is present, however, some recrystallization appears to have taken
place.
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hardness begins increasing quickly for the 2090 alloy. An interesting characteristic can be

observed in these curves whereby the lowest SHT temperature, 510°C (950°F), resulted in

hardness values at long times which were as high as, or higher than, those for other SHT

temperatures. It would normally be expected that higher SHT temperature would tend to increase

the amount of solute in solution and subsequently increase the hardness after precipitation had

taken place.

4,2,4.2.4 SHT + Artificial A tdn_

f

t t_t

_J

The results of screening heat treatments for both alloys processed in the as-received

condition are summarized in Figure 120. These heat treatments include four different solution heat

treatment temperatures each with four different artificial aging temperatures. It appears that, for

both alloys, the trend in hardness measurements during aging is for higher values at higher SHT

temperatures, with the exception of SHT temperature at 510°C (950°F as-formed) and artificially

aged at 150°C (302°F) and 180°C (356°F). It appears that there is a peak hardness at the 180°C

(356°F) age for both alloys at all SHT temperatures used. Aging temperatures at or above 210°C

(410°17) result in an over-aged condition for both alloys as shown by decreasing hardness.

The interesting characteristic which appeared in the SHT + natural aging study also

appeared in the SHT + artificial aging study. This characteristic is the high age-hardened strength

developed after solution treating at 510°C (950°F), which appear to be better than 530°C (986°F) or

545°C (1013°F) and competitive with the 560°C (1040°F) SHT temperature. The data developed

suggests a peak in the age hardened strength of the alloys for a solution temperature around 510°C

(9500F). A study was conducted to further explore the optimum solution heat treatment

temperature in this range. A series of solution heat treatments followed by aging at 180°C (356°F)

for 24 hours was conducted. Hardness results show that there is a peak around 510°C (950°F) for

both alloys. Such a peak is unexpected since it would normally be thought that the higher

temperature would place more solute in solution leading to a greater age hardening response. The

peak hardening for aging at 180°C (356°F) was supported by subsequent tensile tests on the as-

received alloys as shown in Figure 121.

4,2.4,2.5 Effect of Cooling Rate

The cooling rate measured for the various quenching techniques are shown in Figure 122.

The average cooling rates from 510°C (950°1=) to 100°C for the slow cooling, air cooling, and

water quenching are approximately 0.4, 1.2, and 500°C per second respectively.
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Figures 123,and 124-127show the effect of the cooling rate on hardness after SHT at

various temperatures and then aging at two peak aging temperatures. It appears that the 8090 alloy

is less cooling rate sensitive than the 2090 alloy. However, the 8090 alloy does exhibit some

quench rate sensitivity as the cooling rates are reduced, such as may be experienced with air

cooling of thicker sheet alloy. It appears that the 8090 alloy may permit air cooling and aging

directly to achieve good strength properties if the thickness of the parts is not too great. The 2090

alloy does appear to be more sensitive to the cooling rate, and it seems that this alloy will need to

be solution treated after superplastic forming if maximum strength is to be achieved.

4.2.4.2.6 Tensile Test Results

Tensile tests were conducted after the initial heat treatment screening process. The tensile

specimens were processed using the best heat treatment cycles developed during screening of

hardness data. The results of the tensile tests for a variety of heat treatment parameters are

presented in Tables 55 and 56. The trend of the tensile data appears to be consistent with the

hardness results reported previously. Particularly noteworthy are the 8090 alloy results for the

solution treatment temperature of 510°C (950°F) which surprisingly results in strengths as good as

or better than the higher temperatures. A similar response is seen for the 2090 alloy, but not quite

so striking as for the 8090 alloy.

The effect of quench rate was also evaluated using the tensile tests. As can be seen from

Tables 55 and 56, both alloys exhibit slight quench-rate sensitivity as indicated by the tensile

properties. The loss in strength from air cooling is generally only 1 to 3 ksi as compared to the

water quenched specimens.

4.2.4.3 Superplastic Formed Materials

Based on results of the tests on the as-received alloys, the solution heat treatment

temperatures selected for the SPF-processed materials were: 510°C (950°F the SPF temperature),

545°C (1013%'), and 560°C (1040°F). Correspondingiy,:the aging temperature selected were

150°C (302°F) and 180°C (356°F). For those materials to be solution heat treated at 510°C

(950°F), it was assumed that the forming process provided the solution treatment, and the material

was aged in the as-formed condition. For the other two solution treatments, the materials were re-

solution heat treated after the forming process and then aged.
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Figure 120. Effect of the aging temperature (48 hours) on the hardness for

several solution heat treatment temperatures: a. 8090 alloy, and b. 2090
alloy.
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4.2.4.3.1 SHT + Namra] A_ng

Figure 128 shows the natural aging behavior of the 8090 and 2090 A1-Li alloys following

in the as-SPFd and quenched condition and in the post-formed, solution heat treated, and

quenched conditions. It appears that natural aging hardness of 8090 in the as-SPF and quenched

condition without solution heat treatment is higher than 2090 in all cases. For the 2090 samples

that were solution heat treated and aged, the initial hardness was higher than samples of 8090,

however, subsequent natural aging resulted in higher hardness levels for the 8090 samples than

2090. It was also noted that there is approximately a 30 hour incubation period before the natural

aging results in a measurable hardness increase for 8090, whereas a hardness increase is measured

very soon after solution heat treatment for the 2090 material. It is noted that for the as-SPF (at

510°C, 950°F) without solution heat treatment, higher hardness results when natural aging time

was over two weeks.

4.2.4.3.2 SHT + Artificial A_aSng

The information obtained from as-received materials was used as baseline for the as-SPF

materials. The peak aging parameters of 150°C (302°F) and 180°C (35601=) were utilized for the

as-SPF materials. One group of specimens of the as-SPF alloys were directly aged at the above

temperature without SHT while the other two groups of specimens were SHT'd at higher

temperatures (higher than SPF temperature of 510°C (950°F)) for comparison. The screening heat

treatment results are shown in Figures 129 and 130. It appears that for both alloys the hardness

trends are the same as those of as-received materials. It also appears that the 180°C (356°F) aging

gives higher su'engths than 150°C (302°F) does. It is worth noting that the as-SPF alloys, when

directly aged at peak temperature without solution treating, can result in high age-hardened

strength, while the results of those solution treated and aged alloys show somewhat lower

strengths.

4.2.4.3.3 Microstruettne

The microstructure after SPF processing is fully recrystallized, with little evidence of

banding as shown in Figures 131 and 132. The grain size is quite small, of the order of 2 to 5

microns as illustrated in Figures 133 and 134. These characteristics are consistent with the results

of prior work in which it has been suggested that continuous dynamic recrystallization is the

microstructural evolution mechanism operation during the initial stages of superplastic

deformationlT,18,19, 20.
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Figure 131. Optical micrographs of the 8090 alloy, as-SPF processed (510°C,
950°F followed by a water quench), a. longitudinal, and b. transverse views.
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r Figure 133. TEM photograph of the 8090 alloy after forming and aging:

510°C (950°F) followed by a water quench and artificially aged at 180°C

(356°F) for 48 hours.
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Figure 134. Electron micrographs of the 2090 alloy in the condition formed at

510°C (950°F) fdlIi_vFed by a Water quench _d-ar_Ciallyaged_at 180°C

(356017) for24ho_firs_ The microstructure ap_ to have fully recrystallized
grains of approximately 1 to 2 microns. A somewhat non-uniform distribution
of precipitates was observed.
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Careful examination of the metallographic specimens revealed no clear evidence of

cavitation. Apparently _':_upefimposed hydrostatic pres_:'cludng the forming was effective in

controlling the cavitation which would otherwise be clearly evident. The surface depleted layer, as

determined by optical metallography and from examination using the back-scattered electron

detector on the SEM, appears to be of the order of 0.05 mm thick. This is consistent with results

reported by Partridge 21.

The precipitation visible in Figures 133 to 135 is somewhat heterogeneous. There is

evidence of precipitation-free zones (PFZ's), most clearly evident in Figure 135a. Since there is

little dislocation structure within the grains, precipitation appears to nucleate on other available

sites, such as the grain boundaries. However, within the grains, as can be seen in Figure 136,

there appears to be an association of the precipitates with the small dark particles. While not

specifically identified here, it is believed that they may be the 13'AI3Zr particles. The ability of the

13' particles to act as nucleation sites for _i', T1, and 0' has been suggested previously 22.

4.2.4.3.4 Effect of Cooling Rate

Figure 137 and 138 (also 139-143) show the effect that cooling rate after SPF followed by

artificial aging has on mechanical properties. It appears that the 8090 alloy exhibits some cooling

rate sensitivity when aged at 150°C (302°F), but is cooling rate insensitive when aged at 180°C

(356°F). While for the 2090 alloy the trend is reversed; i.e. at 150°C (302°F) age, it is rate

insensitive, and at 180°C (356°F), it is rate sensitive. Since the peak age temperature for both as-

SPF materials was determined to be 180°C (356°F), in this case, it appears that the 8090 alloy is

quite rate insensitive while the 2090 alloy is somewhat more rate sensitive. These results are

consistent with those of unrecrystallized materials.

For the 8090 alloy aged at 180°C (356°F), it appears that air cooled specimens may be

aging more rapidly than the water quenched, and exhibit some indication of beginning to over-age

at times of approximately 100 hours (Figure 136). However, for the practical aging time of 48

hours, fast air cooling appears to develop hardness levels which are quite comparable to that of the

water quenched material.

For the 2090 alloy, (Figure 141-143), aged at 180°C (356°F), water quenching appears to

be develop superior hardness values to those of slow air cooled materials.
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Figure 135. Electron micrographs of the 2090 alloy in the condition formed at

510°C (950°F) f0U0wed by a water quench and artificial aging at 180°C (356°F)
for 24 hours.
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Figure 136. Electron micrographs of the 2090 alloy in the condition formed at

510°C (950°F) followed by a water quench and artificial aging at 180°C (356°F)

for 24 hours. The microstructure consists of the _' as the background

"mottled" structure, with the larger T 1 platelets and larger spherical 8'.
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SPF processed 8090 alloy for a_ng at a. 150°C (302°_, and b. 180°C
(356°_.
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Figure 140. Effect of cooling rate on the age hardening characteristics of the as-
SPF processed 8090 alloy in the as-formed condition: a. water quenched b.
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Subsequent tensile test results support the trends of the hardness testing, and appear to be

consistent with results of other work. A comparison of the results of this study and those of

Shakesheff et al. 23 for 8090 are shown in Figure 144. The 2090 results are generally consistent

with observations reported by Staley and Doherty _.

The effect of the cooling rate on the tendency to form grain boundary precipitation during

cooling is illustrated in the electron micrographs of Figure 145 for the 8090 alloy. A general

increase in the precipitation with decreasing cooling rates is apparent, and is consistent with

observations of past research examinations z3,2'_.

4.2.4,3.5 Tensile Results

i -z:i

The results of the selected tensile tests for both alloys in the as-SPF condition are presented

in Table 57 (for 8090 alloy) and 58 (for 2090 alloy). The tensile data appear to be consistent with

the hardness results reported previously. It is noteworthy that for both as-SPF alloys, the tensile

properties of those aged after SPF processing without a solution heat treatment are as good as, or

better than, those with a solution treatment at higher temperatures. These results are consistent

with those of as-received (non-SPF) materials which have been solution treated at 510°C (950°F

the SPF forming temperature) reported previously. The high strength observed for the water

quench plus 180°C (356°F) for 48 hours age is very promising, although the source of this

strength increase due to SPF is not understood. Additional tests were conducted to substantiate

these strengths, and the data are included in the tables. These strengths are particularly promising

since there was no surface removal after SPF, and any surface depleted layer developed during

SPF processing is still present.

=

r

V-

L

It should be noted that many of the tensile samples failed outside the marked gage length,

as indicated in the tables. It is believed that this is due to the variable thicknesses in the materials as

a result of the SPF processing. In order to provide for a supplementary and perhaps more

consistent measure of ductility, the fracture strain was determined for each sample by measuring

the fracture thickness and width. The fracture strain, El, was then computed from the final area, Af,

and the original area, A0 by using the equation:

Ef-- In (A0/Af)

The fracture strain values are tabulated in each table of the tensile test results.
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Figure 145. Electron micrographs of the 8090 alloy in the as-formed condition

followed by a quench and artificial aging at 180°C (356°F) for 24 hours.
Cooling rates were a: water quenched, b. fast air cooling, and c. slow air
cooling. An increase in grain boundary precipitation with decreasing cooling
rote can be seen.
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While there does appear to be some anisotropy in strength for both alloys, there is very

little anisotropy seen for the 8090 alloy in the as-SPF (510°C, 950°1)/WQ/I 80°C (356°I)/48

hours heat treatment. There does not appear to be a clear anisotropy in the fracture strain for the

8090 alloy; but for the 2090 alloy, the transverse test direction appears to exhibit higher fracture

strains in general. It appears that for the 2090 alloy, the value of fracture strain for specimens in

longitudinal direction is consistently less, albeit by a small degree, than that in transverse direction

for most heat treatment parameters. The exception for the 2090 alloy is the 538°C

(1000°F)/'WQ/180°C (356°17)/20 hours heat treatment. For the 8090 alloy, there is much less

evidence of different ductility in two orientations although some difference is seen with the shorter

aging times.

il

m

i

n

II

The highest strengths were observed both of the materials when they were superpiastically

formed and directly quenched in water followed by artificial aging at 180°C (356°1). Both SPF

processed alloys show some quench sensitivity, however, high strength values were obtained from

all three quench rates used during the study were good. The test results indicated that the faster the

cooling rate following SPF process provided the higher the strength values after artificial aging.

The fracture mode of the alloys in the as-received and age hardened condition appears to be

mixed mode, consisting of trans-granular and intergranular fracture as shown in Figure 146. After

superplastic forming and age hardening, the fracture mode is more consistently intergranular but

with ductile dimples evident as shown in Figure 147. This fracture characteristic is consistent with

the coarser post-formed grain size and the precipitation free zone (PFZ) along many of the grain

boun ries.

4.2.4.4 Discussion of Results

4.2.4.4.1 Microswuctur_

The microstructure after superplastic deformation is that of a fully recrystallized AI alloy,

and is consistent with the observations made for an A1-Li alloy containing Zr15,16,17,1g,19, 20. The

microstructural evolution appears to be that of continuous dynamic recrystallization in which the

deformation causes the sub-grain boundaries to overcome the pinning effect of the A13Zr particles,

and the growth of these sub-grains iS accompanied by the development of high angle boundaries

resulting in a fully recrys_ed material. _le the starting material may have a high de_e of

warm or cold work, the high temperature deformation causes recovery and recrystallization, and

there is not a sufficient dislocation density in the grains to aid in the pr_ipit,_ffon process. In a

previous study on 8091 A1 alloy, it was found that the superplastic deformation, if there was no
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Figure 146. Scanning electron fractographs taken from the failed tensile test

specimens of the a. 2090 and b. 8090 alloys in the unformed but solution heat
treated condition (510°C (950°F)) followed by a water quench and artificial age

at 180°C (356°F) for 48 hours.
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Figure 147. Scanning electron fractographs taken from the' failed tensile test

specimens of the a. 2090 and b. 8090 alloys in the superplastic formed
condition (510°C (950°F)) followed by a water quench and artificial age at

180°C (356°F) for 48 hours. The fracture mode is intergranular, but with
ductile dimples on the grain facets.
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cavitation or surface alloy depletion, did little to alter the age hardened strength as compared with

the solution treated and aged, as-received alloys 15.16. While this is generally found here as well,

the strength of the formed and aged 2090 seems to be a bit higher than that of the unrecrystaUized

(unformed) alloy. This effect may be related to the mechanism(s) causing the peak in strength for

the 510°C (950°F)solution treatment temperature, the temperature which is also the forming

temperature.

4.2.4.4.2 Heat Treatment Results

L2
r.=!

U

L.A

t_

U

The results of this study suggest heat treatment parameters suitable for achieving the

program goal of acceptable strength levels greater than 50 ksi yield strength for superplastically

formed parts produced from the alloys 2090 or 8090. Selected post-SPF heat treatments resulted

in yield strengths of the order 50-54 ksi for the 8090 alloy and 57-70 ksi for the 2090 alloy. An

unexpected, but interesting result observed was that the higher strengths were generally observed

for the alloys when aged directly after forming, where the forming acted as the solution heat

treatment. When the same material was solution heat treated and aged, the strength levels were no

better, and in many cased lower than, those for the aforementioned condition. This result is highly

desirable since it suggests that parts may be superplastically formed and heat treated without need

to conduct an additional high temperature process, that of the solution heat treatment.

4.2.4.4.3 Cooling Rates

The cooling rate from the forming operation at 510°C (950°F)is also of considerable

interest, since it would be desirable to simply air cool the parts rather than water quench them from

the forming operation. Such an air cooling would further simplify the heat treatment of parts, and

should minimi:,e the distortion and dimensional losses that could result from rapid quenching. The

8090 alloy has been suggested to be particularly quench-rate insensitive and was of primary

interest in this program. The corresponding quench-rate effects on the 2090 was examined as

supplementary, and it was intended that this study could show comparative behavior to that of the

8090 alloy. The results of the quench-rate study shows that both alloys exhibit a loss in strength

as the quenching rate is decreased from water quenching to air cooling. The strength loss in the

8090 alloy appears to be consistent with that reported previously for high and low Cu content in

the 8090 alloy 23. The strength loss in the 2090 alloy appears to be greater than that for the 8090

alloy, but the absolute magnitude of the strength after the reduced cooling rates were generally

greater than those for the 8090 alloy since it is a higher strength alloy. Thus, it seems that, on the

basis of resulting strength, the 2090 alloy is quite competitive with the 8090 alloy if air cooling is

4-203



to be used. However, in both alloys, the resulting yield strength may be 1 or 2 ksi below the

program goal of 50 ksi yield strength.

The magnitude of the cooling rote is clearly important, and if a more rapid mild quench than

air cooling could be used, for example a water spray, it may then be possible to develop properties

which are quite competitive to those of the water quenched materials. From Figure 144, it appears

that a quench rate of 10 to 50°C (18 to 90°1=) per second may be sufficiently rapid to permit the

development of nearly peak strength for the 8090 alloy. As indicated in Figures 137 and 138, the

2090 alloy should achieve higher strengths at these rates than for the 8090 alloy even though the

full strengthening capability of this 2090 alloy may not be achieved.

The cause of the strength loss on slower cooling is due to the high temperature precipitation

of the hardening phases, especially these phases nucleating and growing on the grain boundaries as

shown in Figure 145. It has been suggested by Shakesheff et al.23 that the phases forming in the

grain boundaries such as the T2 (A16CuLi3) contain significant amounts of the hardening elements

Cu and Li, which deplete the surrounding matrix of at least some of the hardening precipitates.

Thus, the slower the cooling, the greater the volume fraction of the grain boundary precipitate and

the lower the strength of the age hardened alloy. The loss of the strengthening capability should be

near the grain boundaries, the width of which would depend on the time spent at the high

temperatures near the nose of the "Iwr curve for the precipitation of the phases.

A peak in hardness was observed for the as-received alloys after SHT at 510°C (950°F)

(refer to Figure 120) and generally substantiated with tensile testing for the as-received and

superplastic formed alloys (refer to Tables 55 through 58). The source of this additional hardening

has not been established in this program. It is expected that the amount of solute going into

solution should increase with temperature, and hence it would normally be expected that the higher

solution temperatures would produce the greater hardening. It is suggested that the Zr may be

playing a roiffhe_ _ _ere is additi0nal:preci_i_on of A13Zr 13'phase atthe lower temperatures,

and if this phase contributes to the precipitation of the 8' and/or the T1 phases as has been observed

previously_,_s. In the absence of a pre-strain, which normally introduces an increased dislocation

density suitable to encourage nucleation of the hardening precipitates, the [3' may participate as a

less efficientsubstitute' In this case, itmay be that the a_fional nucleation sites provided by the

[_' compensate for the slight loss of solute due to the lower solution temperature. The 13'is known

to precipitate at temperatures above about 460°C (860°F) 2-z, and solution treating or forming at

510°C (950°F) could be expected to result in a somewhat greater concentration of the _' precipitate

than for the higher temperatures. It :has also been suggested by Nes 2s that superplastic
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deformation may cause a re-dissolution of the 13' as the low angle boundaries pass, and there may

be a subsequent re-precipitation within the grain. This may act to redistribute the grain boundary

[3' into the matrix where it could then aid the hardening precipitation reaction by providing

heterogeneous nucleation sites.

The fracture mode for the SPF-processed alloys is consistently that of intergranular

fracture, although there is clear evidence of ductile dimples on the grain boundary facets. The

fracture process is a ductile one, but the relatively low over-all ductility is probably related to the

localized deformation of the lower strength zones at or near the grain boundaries, perhaps coupled

with the tendency of the coarser grain boundary precipitates to crack or separate during exposure to

high tensile stress and deformation. Additional fractographs of samples exposed to various

thermal treatments utilized during this study are shown as Appendix E.

_L

t L

i

I
I
!

] Ld

7

_-.i

=

4.3 JOINING

The built-up cryogenic tank structure approach required attachment of the stiffeners to skin

materials in such a way that the tank would remain sealed at both ambient and cryogenic

temperatures. Historically, fuel tanks and lines used for cryogenic fuel systems have been fusion

welded in order to assure a leak free structure. In the cryogenic fuel tank, the vertical welds (panel

to panel) and the welds between the barrel sections and the major ring frames will be fusion welded

in order to assure proper sealing of the pressure vessel. However, the attachment of the stiffeners

to the outer skins required a permanent, leak free methodology that would be reliable both during

storage of the tank and during flight. Since mechanical fastening of the stiffeners to the outer tank

skins would not provide for a leak-free surface, alternative attachment methods were examined for

the built-up configuration.

The primary method examined during this program was resistance spot welding of the

stiffeners to the outer skin panels. The resistance spot welding approach provided a leak-free

condition in the cryogenic tank for attachment of the stiffeners to the skins, whether the stiffeners

. were attached to the inner surface of _he tank, or to the outer surface. The second method of

attachment examined briefly during the program was adhesive bonding of the stiffeners to the skins

on the external surface of the cryogenic tank. Several adhesive systems wer e examined and tested

under laboratory conditions for evaluation of fiat-wise tensile and shear behavior at ambient and

cryogenic temperanwes.
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4.3.1 ADHESIVE BONDING
4.3.1.1 Material Selection

An engineering survey of adhesive materials with cryogenic service capabilities was

conducted. The list of adhesives that were selected as candidates for the cryogenic tank are shown

as Table 59.

Table 59. Candidate Cryogenic Structural Adhesives.

Adhesive

Hysol EA 9330

Crest 810 A&B

Crest 7344 A&B

Crest 3710 A&B

Crest 212 A&B

Products Research Corp.
PRC 1665
PRC 1649

BF Goodrich PL-777

Type

Epoxy Paste

Polyurethane Paste

Epoxy Paste

Polyurethane Paste

Polyurethane Paste

Polyurethane Paste

Polyurethane Paste

Curing Temperature

(-r')

Room Temp.

Room Temp.

Room Temp.

Room Temp.

Room Temp.

130

250

Some of the capabilities of the candidate and experimental systems are noted as follows:

• The Hysol EA 9330 epoxy paste adhesive is noted for its high peel strength from -65°F
to +150°F

• Products Research Corporation (PRC) polyurethane adhesive PR-1649 is a thixotropic,
high-strength, polyurethane-based adhesive formulated to provide excellent physical
properties under cryogenic service conditions (recommended for temperatures in the
range of-200 °F).

• The laboratory developed adhesive RW2291-83 was formulated for structural use at
temperatures of approximately -300 _F.

• Ciba-Geigy Corporation has developed a tough, low-temperature structural adhesive
with good toughness and strength. The adhesive (designated LMH263-29) is a
modified epoxy adhesive.

Preliminary adhesive testing (lap shear tests were performed per federal specification

M:MM-A-132,...... flat-wise tensile tests were performed per MiI-A-25463) were conducted on

materi_:_fit appeare_ to be struc_ adhesives at cryogenic temperature and production-ready

materials with aluminum-lithium substrate materials.
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The 2090-T83 A1-Li substrates were machined, solvent wiped, etched, rinsed, air dried,

and baked at low temperature for fifteen minutes prior to bonding. Cryogenic testing was

performed with LN 2 in accordance with industry standards. Lap shear (0.5 in 2 surface area) and

flat'wise tensile (1 in 2 surface area) results are A1-Li shown in Table 60. Flat-wise tensile results

that are reported as NC (not completed) failed the 2090-T83 parent metal in bearing rather than the

adhesive. Overall the adhesives performed very well during the evaluation. If adhesives are to be

used on the Advanced Launch System for attachment of stiffeners to outer skin panels further

testing would provide additional information.

Table 60. Adhesive Preliminary Test Results.

ADHESIVE

CRESTS

810 A&B

7344 A&B

212 A&B

PRODUCTS

Research Corp.

PRC 1665

TYPE

PASTE

PASTE

PASTE

PASTE

CURING

TEMP.

oF

RT

RT

RT

130

LAP-SHEAR

(psi)

5970

6030

1576

2940

4380

4565

4690

4680

839

7190

5540

676

FLATWISE

TENSILE

(psi)
NC

NC

650

NC

11941

4542

NC

NC

1927

NC

NC

1350

TEST T/_MP.

oF

-320

-165

RT

-320

-165

RT

-320

-165

RT

-320

-165

RT

4.3.2 RESISTANCE SPOT WELD DEVELOPMENT

Characterization of the resistance spot weld (RSW) parameters for the materials used

during this program utilized the Taguchi design of experiments. The Taguchi experiment process

minimized the number of coupons that needed to be tested while evaluating the characteristics of

the weld process as a function of the processing variables. Both the 7475-T62 to 2219-T81, and

the 2090-T62 to 2090-T83 material combinations were examined with the Taguchi methodology.

Once the optimum weld parameters had been isolated by this technique, standard test

methodologies for development of the behavior of the weld were utilized.

w
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The resistancespotweld equipmentusedduring theprogram at GeneralDynamicswasa
Ferranti-SciakyPMCO.5STM-400-36(Refer to Figure 148). The welder wasequippedwith a

microprocessorbasedcontroller/monitor, 400 KVA frequency converter transformer, 220,000

maximum secondary short circuit amperage, and has a 20,000 pound maximum electrode force

capability.
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Figure 148. Resistance Spot Welding Equipment at Genera] Dynamics.
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= 4.3.2.1 Resistance Spot Weld Characterization 7475-T62 to 2219-T81 Aluminum

?

A Taguchi L9 orthogonal array of tests was performed for the combination of 0.100" 7475-

T62 joined to 0.190" 2219-T81 aluminum to identify optimum resistance spot welding parameters

for the specified combination. The L9 array consisted of nine (9) tests (as shown in Table 61),

each representing a different weld schedule. The four weld parameter variables (or factors) chosen

for the ].,9 array were observed during previous Taguchi tests to have the greatest effect on the

success of the weld joint. The variables chosen were weld time as cycles, weld heat as percent,

weld force as pounds, and forge force as pounds with each variable having three levels

representative of maximum, minimum, and an average value (e.g. Weld Time: Minimum = 5,

Average =6, Maximum =7).

Table 61. L9 Taguchi Test Matrix for 0.100" 7475-T62 to 0.190" 2219-T81 A!
Material Combination.

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

A
Weld Time

Cycles

5

5

5

6

6

6

7

7

7

B
Weld Heat

Percent

28

33

38

28

33

38

28

33

38

C
Weld Force

Pounds

2400

2950

3400

2950

3400

2400

3400

2400

2950

D

Forge Force
Pounds

5600

6400

7200

7200

5600

6400

6400

7200

5600

Each test schedule (1 through 9) was evaluated based upon seven replicate specimens (three

lap shear, and four macro cross section examinations). The data was placed into a response table

for weld nugget diameter (refer to Table 62) in order to compare the behavior of each test and

determine the level of significance between the four factors (weld time, weld heat, weld force, and

forge force] on the quality of the weld and with Mil-Handbook requirements. The MIL-W-6858

specification for resistance spot welded aluminum (thickness combination of 0.100" to 0.190")

required the following joint constraints be satisfied:
Minimum average shear strength = 1825 pounds

Minimum nugget diameter = 0.250 inch
Nugget penetration = Minimum = 20 percent of thinner sheet

Maximum = 80 percent into each sheet
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Table 62. Response Table for Weld Nugget Diameter (inches) of the 0.I00"
7475-T62 to 0.190" 2219-T81 Material Combination.

Factor Levels

Level 1
Level 2
Level 3

A
Weld Time

Cvcles
0.0

0.110
0.237

B
Weld Heat

Percent
0.0

0.117
0.230

Weld Force
Pounds
0.227
0.120

0.0

D

Forge Force
Pounds
0.120
0.110
0.117

A Levels High to Low 0.237 0.230 0.227 0.110

IB

Ill

I

II

It was determined based upon the weld nugget diameter data that factor A (weld time as

cycles) had the greatest effect upon the weld quality (with a response value of 0.237), and that

factor B and C (weld heat and weld force) for provided second and third greatest effect on the weld

joint. These conclusions were based upon the assumption that a minimum nugget diameter would

provide the best structural efficiency (due to the minimized heat affected zone in the outer skin) for

the tank structure. The minimum value (excluding zero values) for each factor was selected as the

optimum weld schedule (as shown in Table 63). The optimized results were verified with

confirmatory tests for reproducibility of results (refer to Table 64).

Table 63. The Optimum Factor Levels were Selected Based Upon Response Table
Results for Minimum Nugget Diameter.

Factor A Level 2 (response value =. 110) Weld Time = 6 Cycles
Factor B Level 2 (response value =. 117) Weld Heat = 33 Percent
Factor C Level 2 (response value = .120) Weld Force = 2950 Pounds

Factor D Level 2 (response value =.110) Forge Force = 6400 Pounds

Table 64. Confirmatory Test of Optimized Weld Schedule for Minimum
Nugget Diameter.

Shear
Pounds

2576
2961
2943

Ave.

NuggetDiameter
Inches
0.308
0.303
0.325
0.315

0. OO
0.310

Nugget Penetratio'n*
Percent

47 / 24
42 / 25
60 / 34
60 / 34

1 -
52 / 29

Nugget penetration in 0.100" 7475-T62 sheet/penetration into 0.190" 2219-81
sheet

The optimum weld schedule for best nugget diameter (developed in accordance with the

Taguchi design of experiments) met the MIL-W-6858 specification.
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The response table for the lap shear tests is shown as Table 65. The data from the lap shear

results were compared and the significance of the weld factors were ranked according to optimum

lap shear results. It was concluded, based upon the assumption that a maximum lap shear value

was desirable for the joints, that factor B (weld heat) had the greatest effect on the weld joint

followed by factors C and A (weld force, and weld time). The maximum lap shear value for each

factor was selected as the best level for optimum lap shear performance and axe shown as an

optimized weld schedule in Table 66. Confirmatory tests were performed to verify the

reproducibility of the results as shown in Table 67.

Table 65. Response Table for Shear Test Values (pounds) of the 0.100" 7475-
T62 to 0.190" 2219-T81 Material Combination.

Factor Levels

Level 1
Level 2
Level 3

A Levels High to Low

A
Weld Time

Cvcles

2395
2546
3092

697

B
Weld Heat

Percent

1896
2874
3263

1367

C
Weld Force

Pounds

3119
2635
2279

840

D

Forge Force
Pounds

2982
2557
2493

488

Table 66. The Optimum Factor Levels were Selected Based Upon Response Table
Maximum Lap Shear Test Results.

Factor A Level 3 (response value = .3092) Weld Time = 7 Cycles
Factor B Level 3 (response value = .3263) Weld Heat = 38 Percent
Factor C Level 1 (response value = .3119) Weld Force = 2400 Pounds

Factor D Level 1 (response value - .2982) Forge Force = 7200 Pounds

Table 67.

Ave.

Confirmatory Test of Optimized Weld Schedule for Maximum Lap
: Shear Result.

Shear

Pounds

3898
3387
3782
3689

NuggetDiameter
Inch¢_

0.350
0.355

Nugget Penetration*
Percent

75 / 76
75 / 79

0.352 75 / 77

Nugget penetration in 0.100" 7475-T62 sheet/penetration into 0.190" 2219-8
sheet.
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The optimum weld schedule for the maximum lap shear values met the MIL-W-6858

specification, however, the welds were rejected due to molten aluminum expulsion during the spot

weld formation.

The purpose of utilizing the Taguchi array was to direct the weld engineer toward the range

of weld machine settings that would produce the most robust weld schedule for the desired material

combination and thickness. Examination of the lap shear and nugget diameter Taguchi tests arrays

resulted in the conclusion that development of a weld schedule based upon lap shear results does

not provide an optimum weld schedule.

4.3.2.1.1 Weld Cycle Development 7475'T62 Joined to 2219-T81 Aluminum

A second Taguchi orthogonal array of tests (L8) were performed on the 7475-T62

(thickness of 0.100") to 2219-T8 (thickness of 0.190") aluminum to optimize resistance spot

welding heat and weld time parameters for the two materials. The L8 array consisted of eight tests

(as shown in Table 68), each representing a different weld schedule. Five weld factors were

chosen for the L8 array that were observed to be the most significant and sensitive to small changes

in setting. The modification provided four levels for weld heat and two levels for the remaining

factors.

Table 68. L8 Taguchi Test Matrix for 0.100" 7475-T62 to 0.190" 2219-T81 A!
Material Combination.

Test l

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

A
Weld Time

Cvcle_

6

7

6

7

6

7

6

7

B
Weld Heat

Percent

31

31

33

33

35

35

37

37

C
We_ Force

Pounds

2400

2950

2400

2950

2950

2400

2950

2400

D

Forge Force l
Pounds

6400

7200

7200

6400

6400

7200

7200

6400

E

Squeeze
Cvcles

40

55

55

40

55

40

40

55

Each test schedule required ten test specimens (three lap shear specimens, four macro cross

section specimens, and three sheet efficiency test specimens). The data from the tests were

reduced in order to compare the factor levels and determine the level of significance between the
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four factors. The results from analysis of the L8 array data showed that the B factor (weld heat in

percent) was the most significant parameter, followed closely by the weld force in pounds. The

remaining factors, forge force, weld time and squeeze, in most cases were insignificant The best

overall schedule was chosen based upon the values in the response tables. Three candidates for an

optimum weld schedule were obtained and conformation tests were run (refer to Table 69 through

71).

Confirmatory_ Test Schedule #1
Factor A - Level 2 Weld Time
Factor B - Level 3 Weld Heat
Factor C - Level 1 Weld Force

Factor D - Level 1 Forge Force
Factor E - Level 2 Squeeze

= 7 Cycles
= 35 Percent
-- 2400 Pounds
= 6400 Pounds

= 55 Cycles

Confirmatory Test Schedule #2
Factor A - Level 1 Weld Time
Factor B - Level 3 Weld Heat
Factor C - Level 1 Weld Force

Factor D - Level 1 Forge Force
Factor E - Level 2 Squeeze

- 6 Cycles
= 35 Percent
= 2400 Pounds
= 6400 Pounds

-- 55 Cycles

L

Confirmatory Test Schedule #3
Factor A - Level 2 Weld Time

Factor B - Level 2 Weld Heat

Factor C - Level 1 Weld Force
Factor D - Level 1 Forge Force
Factor E - Level 2 Squeeze

= 7 Cycles
= 33 Percent
= 2400 Pounds
= 6400 Pounds

= 55 Cycles

Table 69. Test Results for Confirmatory Run on Schedule #1.

: =-: =

r_

=

w

Coupon I.D.

1C1
1C2
1C3
1(24
1C5
1C6
1C7

Nugget Diameter
inch

0.340

0.335

0.340

0.335

Nugget Penetration*
% Upper

Sheet

95

80

80

80

% Lower
Sheet

21

28.9

34.2

36.8

Shear
lbs

3211

3103

3348

Weld Quality

expulsion
expulsion
expulsion
expulsion
expulsion
expulsion
expulsion

Average 0.338 8 3.8 30.2 3221

* Nugget penetration in 0.100" 7475-T62 sheet/penetration into 0.190" 2219-81 sheet.
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Table 70. Test Results

ii frill F I 1 = T .......

Coupon I.D. Nugget Diameter

2C1
2C2
2C3
2C4
2C5
2C6
2C7

Average
Nugget penetration

inch

for Confirmatory Run

Nugget Penetration*

%Upper l %Lower

0.350

0.350

0.355
0.350

Shell

70

70

70
65

0.351 68.8

in 0.100" 7475-T62 sheet/

Sheet

26.3

34.2

34.2
36.8

32.9

_enetration

on Schedule #2.

Shear
lbs

3460

3480

3429

3456

Weld Quality

good
good
good
good
good
good
good

into 0.190" 2219-81 sheet.

Table 71. Test Results for Confirmatory Run

Coupon I.D.

3C1
3C2
3C3
3C4
3C5
3C6

Nugget Diameter
inch

0.325

0.350

0.360

ii

Nugget Penetration
% Upper % Lower

$he¢_ $h¢¢t
80 21

65 42.1

75 34.2

on Schedule #3.

Shear
lbs

3502

3225

3663

Weld Quality

expulsion
good
good

expulsion
expulsion

good
3C7 0.360 80 47.4 - good

Average 0.338 75.0 36.2 3463
Nugget penetration in 0.100" 7475-T62 sheet / penetration into 0.190" 2219-81 sheet.

Weld schedule #1 exceeded the maximum depth of penetration into the thin sheet and had

considerable weld expulsion. Weld schedule #2 met all of the criteria for the military specification

of resistance spot welding, and weld schedule #3, while it met all of the parameters set out in the

specification, had weld expulsion three times out of seven, and was found unacceptable. Thus the

optimum weld schedule developed under the Taguchi design of experiments was selected as

schedule #2.

Resistance spot weld spacing tests were performed in order to determine the effects that

rater-spot spacing has on weld strength and quality. Continuous sheet test specimens (refer to

Figure 149) were welded from 0.100" 7475-T62 joined to 0.190" 2219-T81 using a certified weld

schedule with inter-spot spacings of 0.75", 1.00", 1.25" and 1.5" and the secondary current,

nugget expansion, dynamic resistance, weld force, forge force, lap shear values, weld penetration,
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and nugget diameters were recorded for all of the tests. Single spot specimens were welded as a

control for comparison with the spot spacing specimens. For each of the different spot spacing

configurations and single spot specimens, seven test coupons were examined for micro cross

sections and three lap shear specimens. The results from the tests are shown in Table 72.

Figure 149. Schematic for inter-spot spacing test.

(

X

)O 000000

y
I

I

OOlO
I

I
I

x = Inter-spot spacing
y = Width of Lap shear coupon

Table 72. Resistance Spot Spacing Test Results for 0.100 inch 7475-T62 to
0.190 inch 2219-T81 Aluminum.

Schedule:

(24

Spot Weld
Spacing

(inCh)

0.75

1.00

Weld Heat (36 percent), Weld Time (6 cycles), Weld Force (15 psi), Forge Force

psi), Squeeze (55).
Coupon I.D. Nti'gget Nugget Penetration Shear

1SSI-I
1SS1-2
1SS1-3
1SS1-4
1SS1-5
1SS1-6
1SS1-7

Average
1SS2-1
1SS2-2
1SS2-3
1SS2-4
1SS2-5
1SS2-6
1SS2-7

Average

Dian_ter
(inch)

Diffusion

Diffusion

Diffusion

Diffusion
Diffusion
Diffusion

0.300

0.260

0.290
0.283

Upper Sheet
l Lower Sheet(inch)

Diffusion

Diffusion

Diffusion

Diffusion
Diffusion

Diffusion

.020 - .040

.015 - .040

.010 - .030
.015 - .037

(inch)
Diffusion

Diffusion

Diffusion

Diffusion
Diffusion
Diffusion

.050

.045

.040
.045

Strength
(Lbs)

2292

2413

2431

2379

2047

2469

2246

2254

7
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Table 72 (Continued). Resistance Spot Spacing Test Results for 0.100 inch
7475-T62 to 0.190 inch 2219-T81 Aluminum.

Spot Weld
Spacing

finch)

1.25

1.50

Single Spot

Coupon I.D.

1SS3-1
1SS3-2
1SS3-3
ISS3-4
ISS3-5
1SS3-6
1SS3-7

Average
1SS4-f
1SS4-2

ISS4-3
1SS4-4
1SS4-5
1SS4-6
IS54-7

Average
lSS5-f
1SS5-2
1SS5-3
1SS5-4
1SS5-5
1SS5-6
1SS5-7

Average

Nugget
Diameter

(in_h)
0.300

0.300

Diffusion

0.300
0.300

0.300

0.300

0.290

0.325

O.3O4
0.325

0.315

0.300

0.310
0.313

Nugget Penetration
Upper Sheet [ Lower Sheet

(inch) ! finch)
.045

.045

Diffusion

.050
.047
.060

.050

.040

.050

,050
.050

.045

.045

.050
.048

.015 - .040

.015 - .045

Diffusion

.020 - .050
,017 - .045

.020 - .045

.020 - .040

.010 - .O25

.025 - .050

.019 - .O4O
.010 - .040

.015 - .O30

.O2O - .025

.025 - .050
.018 0.036

Shear

Strength
fLbs_

2569

2908

2685

2721

2421

2347

2394

2387

2267

2769

2432

2489

The spot spacing tests revealed that there was not a significant decrease in lap shear values

: as spot spacings decreased from 1.5" tO 0.75", however, a decline in nugget diameters was noted.

_Furthermore, sp6t Weld penetration into the 0.i00" sheet showed a slight decrease with the

decrease in spacing. The penetration into the 0.190" sheet resulted in a decrease in minimum

penetration as spacing decreased but maximum penetration remained unchanged. The most

important observation was that as the spot weld spacing decre_ the greater the shunting effect

to the adjoining spot weld, which resulted in a greater probability for diffusion spot welds.

4.3.2.1.2 Ambient Test Data 7475-T62 _oinecl to 2219-T81 Aluminum

Sheet efficiency tests were performed on the 2219-T81 material in order to determine the

"knockdown" against the ultimate tensile strength for a given skin section exposed to the heat

genemt_ dudng_e formation of a spot welC Tensile coupons were prepared by rnac_g 2" x

_= I2" x 0.190_' thick pieces into a "dogbone" shape _th the gage section reduced in width to 1.00

inch. The sheet efficiency test results are shown in Table 73 for 2219-T81 skin.
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Table 73. 0.190" 2219-T81 Aluminum Skin Efficiency (or Reduction in Ultimate
Tensile Strength) After Spot Welding of 0.100" 7475-T62 Stiffeners.

Material Type

2219-T81

Test Temperattm: Ftu
(_r') (ksi)

20 62.1
!

Sheet Efficiency

62.1/65.6" = 94.75

* Note: Ratio taken from actual test data rather than allowable data.

Weld schedules were developed for the crippling test panels (due to thinning in the

superplastic formed flange, new cycles were developed, based upon the initial results) and were

verified through certification testing. The results from the tests are shown in Table 74. The

average lap shear test value for the schedule was 2909 pounds, the minimum being 2565 pounds,

and I00% of the individual test values fell within + 12.5% range (the range required for passing

certification) of the average value. The average nugget diameter was 0.303" with a minimum

nugget diameter requirement of 0.22ff' per MIL-W-6858D. Nugget penetration into the 7475-T62

(the thinnest sheet) was recorded as a minimum of 61% and a maximum of 80% of the sheet

thickness and penetration into the 2219-T81 (the thicker) sheet was recorded as a minimum of 18%

and a maximum of 30%. Military specifications on resistance spot welding requires a minimum

nugget penetration of twenty percent of the thinnest sheet thickness into both of the sheets being

welded, and that maximum penetration shall not exceed eighty percent of the thickness of each

sheet. Although the lap shear certification test exceeded the MIL-W-6858D requirement for

average lap shear for the thinnest sheet thickness of 0.077" (1202 pounds), the nugget penetration

into the lower sheet was insufficient to qualify the schedule for certification. However, due to the

quality of the welds and the lap shear values, it was believed that the schedule would exceed the

design requirements for the crippling test panels, thus the schedule was utilized during panel

fabrication.

4.3.2.1 ._ Cryogcnic Test Data 7475-T62 Joined to 2219-T81 Aluminum

k.,

Sheet efficiency tests were performed under cryogenic temperature on the 2219-T81

material in order to determine the "knockdown" against the ultimate tensile strength for a given skin

section exposed to the heat generated during the formation of a spot weld. Tensile coupons were

prepared by machining 2" x 12" x 0.190" thick pieces into a "dogbone" shape with the gage

section reduced in width to 1.00 inch. The cryogenic sheet efficiency test results are shown in

Table 75 for 2219-T81 skin.

w

4-217



J

Cryogenic Lap Shear Tests on the 0.100" 7475-T62 joined to 0.i90" 2219-T81 material

combination were performed in order to evaluate the response of the spot welds produced by the

certified Weld schedule operating under cryogenic tempera_es. Fifty ::Spotweld coupons were

welded in sequence using the previously certified weld schedule. Forty of the fifty spot welded

specimens were tested" in Lap Shear at cryogenic temperatures; twenty at LN2 temperatures of

-320°F and twenty at _ temperature of -423"F. The remaining ten coupons were processed for

micro cross-section data. The Lap Shear and weld nugget measurements are shown in Table 76

and Table 77 and summary representations of the ambient and cryogenic lap shear, nugget

diameter, nugget penetration, and sheet efficiency are shown in Figures 150 through 152.

Table 74. Weld Schedule Certification 0.077" 7475-T62 Joined to 0.190" 2219-
T81 Aluminum.

Schedule: Weld Heat (35 percent), Weld Time (6 cycles), Weld Force (16 psi), Forge Force (24
psi), 5 _ueeze (55). i_

Coupon ID Nugget Diameter Nugget Penetration Shear
% Upper Sheet [ % Lower Sheet

(inch) 7475-T62 I 2219-T81 (Lbs._
Cr4-I 2833
CT4-2 3076
CT4-3 2926
CT4-4 3022
CT4-5 0.315 78.2 - 79.5 24.4

CT4-6 3064
CT4-7 2960
CT4-8 3025
CT4-9 2862
CT4-10 0.312 74.0- 80.5 24.7
CT4-11 2693
CT4-12 2565
CT4-13 2574
CT4-I4 3046
CT4-15 0.286 64.5 - 80.0 18.4
CT4-16 3016
CT4-17 2968
CT4-18 2893
CT4-19 2890
CT4-20 0.290 60.8 - 79.7 21.5
CT4-21 2765
CT4-22 3034
CT4-23 2956
CT4-24 3006
CT4-25 0.313 76.4 - 80,6 18.1

Average 0.303 70.5 21.4 2909
MiI-W-6858D _eeification Lira ts for Acceptable Lap Shear ' alues: 18 out
Test Values Must Fall Within Specification Limits + 12.5% to Pass Evaluation.

7475-T62
Thickness

(inch)
0.071
0.074
0.076
0.077
0.078
0.079
0.080
0.079
0.078
0.077

0.076
0.075
0.072
0.074
0.076
0.078
0.079
0.079
0.080
0.079
0.079
0.077
0.075
0.074

0,072
0.077
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Percent Deviation from Shear Value -25,0%
Calculated Deviation (Lbs) 2182

-12.5% Mean +12.5% +25.0%
2545 2909 3272 3636

MiI-W-6858D Minimum Values for Thinnest Sheet.

Minimum Ave. Shear Strength: = i202 Lbs
Nugget Penetration: Minimum = 20% of thinner sheet

Table 75. 0.190" 2219-T81 Aluminum Skin

Tensile Strength) After Spot Welding

Minimum Nugget Diameter = 0.220 inch
Maximum = 80% of thinner sheet

Efficiency (or Reduction in Ultimate
of 0.100" 7475-T62 Stiffeners.

Material Type

2219-T81

Test Temperature

-320

-423

Ftu

(ksi)

74.8

86.0

Sheet Efficiency

(%)

74.7/81.9" = 91.3

86.0/95.5* = 90.05

* Note: Ratio taken from actual test data rather than allowable data.

From the LN2 data in Table 76, the average lap shear test value was 4346 lbs., and the

minimum value was 3952 Ibs. One hundred percent of the individual values were within the

+12.5% range of the average test value. The measured nugget penetrations and diameters for all

macros were within MIL-W-6858D requirements.

From the LH2 data in Table 77, the average lap shear test value was 4134 lbs., and the

minimum value was 3550 lbs. Eighty-five percent of the individual test values were within the

+ 12.5% range of the average test value. The remaining 15% were within the + 25% range of the

average test value. The measured nugget penetrations and diameters for all macros were within

MIL-W-6858D requirements.

4.3.2.1.4 Ex'oosure After Cleanine

Pre-weld "out-time" cleaning tests were performed in order to determine acceptable

cleaning methods for aluminum alloys and determine the amount of time after cleaning that

acceptable spot welds could be produced. Standard cleaning methods were used for the materials

which consisted of three to five minuets of alkaline clean, followed by a 45 to 60 second chemical

etch (hydrofluoric/nitric acid solution) with a final five minute deoxidizer (acid/chromate/sulfate

solution) with a final five minute water rinse and a 10 minute oven dry. The "out-time" test was

planned for a period of ten days with three tests performed each day.

Prior to welding each day, the coupons were wire brushed and solvent wiped. The results

from the test are shown in Table 78 through 80. The test was discontinued after day three due to
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weld expulsion however, the entire exposuretest was repeatedin order to verify the exposure

requirementsfor thealuminumcombination.

Table 76. LN 2 (-320°F) Cryogenic Resistance Spot Weld Test Results.0.100 inch
7475-T62 to 0.190 inch 2219-T81 Aluminum.

Schedule:

psi), Squeeze (55).
Coupon ID Nugget Diameter

(inch)

Weld Heat (36 percent), Weld Time (6 cycles), Weld Force (16 psi), Forge Force (24

0.365

0.350

0.350

0.3545

0.360
0.354

2CRY- 1
2CRY-2
2CRY-3
2CRY-4
2CRY-5
2CRY-6
2CRY-7
2CRY-8
2CRY-9
2CRY- 10
2CRY- 11
2CRY- 12
2CRY- 13
2CRY- 14
2CRY- 15
2CRY- 16
2CRY- 17
2CRY- 18
2CRY- 19
2CRY-20
2CRY-21
2CRY-22
2CRY-23
2CRY-24

2CRy-25

Average

Nugget Penetration
% Upper Sheet

7475-T62
80.0

60.0

60.0

55.0

55.0
62.0

% Lower Sheet2219-T81
20.0

27.0

25.0

25.0

25.0

24.4

Shear

0bs)

4662
4129
4350
4400

4392
4411
4406
4143
4468
4230
4140
4375

4165
3952
4326
4531

4605
4440
4306
4490

4346

Mil-W-6858D Specification Limits for Acceptable Lap Shear Values:
Test Values Must Fall Within Specification Limits + 12.5% to Pass Evaluation.

18 out of 20

Percent Deviation from Shear Value -25.0%

Calculated Deviation (Lbs) 3260

-I2.5% Mean +12.5% +25.0%

3803 4346 4889 5433
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Table 77. LH 2 (-423°F) Cryogenic Resistance Spot Weld Test Results.0.100 inch
7475-T62 to 0.190 inch 2219'T81 Aluminum.

Schedule: Weld Heat (36 percent), Weld Time (6 cycles), Weld Force (16 psi), Forge Force (24

psi), Squeeze (55).
Coupon ID Nugget Diameter Shear

1CRY-1
1CRY-2
1CRY-3
1CRY-4
1CRY-5
1CRY-6
1CRY-7
1CRY-8
1CRY-9
ICRY- 10
1CRY- 11
1CRY-12
1CRY-13
1CRY- 14
1CRY-15
1CRY-16
1CRY-17
1CRY-18
1CRY- 19
1CRY-20
1CRY-21
1CRY-22
1CRY-23
1CRY-24
1CRY-25

AvG_a_e

(inch)

0.355

0.355

0.360

0.330

0.345

0.349

Nugget Penetration
% Upper Sheet 1% Lower Sheet

7475-T62 I 2219-T81
75.0 30.0

60.0 20.0

65.0 25.0

50.0

60.0

62.0

23.0

20.0

0bs)

3740
3980
4050
3995

4130
3710
3605
3990
3880
4200
4330
4110

3550
4470
4250
4590

4490
4840
4320
4520

23.6 4134

MiI,W-6858D Specification Limits for Acceptable La
Test Values Must Fall Within Specification Limits + 12.5% to Pass Evaluation.

Percent Deviation from Shear Value -25.0% -12.5% Mean +12.5%
Calculated Deviation (Lbs) 3100 3617 4134 4650

Shear Values: 18 out of 20

+25.0%
5167

Note: 17 out of 20 pass with the 12.5% deviation.
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Table 78. Results from Day One of Set One Pre-Weld Cleaning Test 0.100"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

! =:-

! _v.__

I.D. Weld Heat Nugget Upper Min. Lower Max. Lower Surface Shear
Set/# Diam. Penetration Penetration Penetration Resistance

(_'y¢.- %) (in.) (in.) (in.) (in.) (uf_) (]bs)
1P1/1 36 0.350 0.075 0.015 0.045 17
1P1/2 36 65 3677
1P1/3 36 0.325 0.050 0.025 0.055 22
1P1/4 36 40 3629
1P1/5 36 0.300 0.050 0.020 0.050 30
1P1/6 36 52 3447
1P1/7 36 0.265 0.045 0.010 0.015 27

Ave 1 0.310 0.055 0.018 0.041 36 3584

1P2/1 36 0.360 0.075 0.015 0.055 25
1P2/2 36 33 3250
1P2/3 36 0.325 0.050 0.020 0.045 67
1P2/4 36 35 3735
1P2/5 36 0.300 0.050 0.020 0.040 27
1P2/6 36 31 3703
11'2/7 36 0.300 0.050 0.020 0.055 20

Ave 2 0.328 0.051 0.019 0.049 34 3563

The second set (set two) of exposure coupons are shown in Table 81 through 85. The

conditions and weld schedules used for the re-test sets are provided as follows:

1) Bagged or protected material without adjustments to the weld schedule: the weld heat =
38.5%, and weld time = 6 cycles.

2) Non-bagged or exposed specimens, without adjustments to the weld schedule: the weld
heat = 38.5%, and weld time = 6 cycles.

3) Non-bagged or exposed specimens, with an adjustment to the weld schedule: the weld
schedule adjustments were made to produce an acceptable weld nugget.

r_

L.

Batch number one of set two, was the control group for the experiment and was welded to

represent material that had been cleaned just prior to welding. The control specimens were used to

verify that the resistance spot weld machine and the surrounding environment would not cause the

formation of unacceptable welds. The control coupons were removed from the vacuum bag and

wire brushed and solvent wiped just prior to welding.

Batch two and three of set two were exposed to the environment and welded in order to

assess the change in the weld quality with and without adjustments to the weld schedule. On the

fin'st day of the experiment, the materials from both of these groups were removed from the
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vacuumbags,wire brushed,and exposed to the atmosphere covered only with shop packing paper

in order to simulate shop environment. Welds were made each day from each of the sets and

evaluated for quality. The test was halted at'mr five days due to the inability to produce acceptable

welds in the exposed material.

Table 79. Results from Day Two of Set One Pre-Weld Cleaning Test 0.100"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

m
I

m

I

m

I

II

m

I.D. Weld Heat Nugget Upper Min. Lower Max. Lower Surface Shear
Set/# Diam. Penetration Penetration Penetration Resistance

(Cyc.- %) (in.) (in.) (in.) (in.) (ttQ) fibs)

1P3/1 36 0.325 0.050 0.015 0.050 35

1P3/2 36 77 3476
1P3/3 36 0.365 0.065 0.025 0.040 86
1P3/4 36 20 3196
1P3/5 36 0.325 0.050 0.020 0.050 68
1P3/6 36 35 3169

1P3/7 36 0.325 0.055 0.025 0.045 95
Ave 3 0.335 0.055 0.021 0.046 59 3280

1P4/1 36 0.360 0.060 0.010 0.050 25
1P4/2 37 25 3609
1P4/3 37 0.375 0.075 0.015 0.060 30

1P4/4 37 26 3369
1P4/5 37 0.370 0.065 0.025 0.045 20
1P4/6 37 19 3517

1P4/7 37 0.350 0.065 0.015 0.060 20
Ave 4 0.364 0.066 0.016 0.054 24 3498

1P5/1 36 0.350 0.050 0.010 0.045 15
1P5/2 37 17 3463
1P5/3 37 0.375 0.070 0.025 0.075 30
1P5/4 37 18 3732
1P5/5 37 0.350 0.060 0.025 0.065 25

1P5/6 37 23 3212
1P5/7 37 0.350 0.060 0.015 0.040 30

Ave 5 0.356 0.060 0.019 0.056 23 3469
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Table 80. Results from Day Three of Set One Pre-Weld Cleaning Test 0.I00"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

U

5 =

:_÷
W

w

I.D. Weld Heat Nugget Upper Min. Lower Max. Lower Surface Shear
Set/# Diam. Penetration Penetration Penetration Resistance

(Cvc.- %_ (in.) (in.) (in.) fin.) (u_) (lbs)

1P6/1 35 0.370 0.055 0.015 0.050 *
1P6/2 36 150 2896
1P6/3 36 0.375 0.060 0.025 0.065 *
1P6/4 36 45 2933
1P6/5 36 0.350 0.050 0.020 0.050 45
1P6/6 36 25 3341
1P6/'7 36 0.350 0.060 0,020 0.050 40

Ave 6 0.361 0.056 0.020 0.054 6 1 3057

1P7/1 36 0.350 0.060 0.015 0.050 60
1P7/2 37 54 3104
11:'7/3 37 0.375 0.065 0.030 0.080 42
1P7/4 37 60 3167
1P7/5 37 0.375 0.050 0.025 0.065 42
1P7/6 37 57 3226

1t7/7 37 0.325 0.050 0.015 0.040 61
Ave 7 0.356 0.056 0.021 0.059 54 3166

Welding difficulties were encountered on the f'u'st day of the program. However, the

testing was continued for five days. The nugget penetration and surface resistance data were

recorded throughout the duration of the test and are included as Tables 81 through 85.

Surface resistivity for the material was within the mil-spec requirement of 50 p-Q maximum

for every day of testing. However, due to problems encountered with the weld equipment during

the entire test program, the minimum and maximum penetration into the lower sheet was far below

normal values for the material combination. The nugget penewation for each set of coupons was

similar for all of the day one specimens, but appeared to get worse as the week progressed. The

steady decline in the penetration values into the lower sheet for the material that had been exposed

to the "shop" environment versus the "bagged, or protected" material, did not warrant continuation

of the test past day five. It is still unclear as to the maximum duration for spot weld cleanliness for

the 7475-T62 to 2219-'I"81 material combination, however, since two test programs have been

completed on this material combination with results indicating problems after five days of welding,

it is safe to assume that the material must be vacuum bagged if welding is not to occur during the

same week as cleaning.

w
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Table 81. Results from Day One of Set Two Pre-Weld Cleaning Test 0.I00"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

I.D. Weld Heat Nugget Min. Upper Max. Upper Min. Lower
Set/# Diam. Penetration Penetration Penetration

(Cvc. - %) (in.) (in.) (in.) (in.)

1/1 6 - 38.5 0.319 0.047 0.050 0.014
1/2 6 - 38.5 0.327 0.050 0.056 0.013
1/'3 6- 38.5 0.319 0.046 0.050 0.012
1/4 6 - 38.5 0.296 0.044 0.046 0.011
1/5 6 - 38.5 0.334 0.050 0.053 0.016
1/6 6 - 38.5 0.309 0.045 0.046 0.013

Ave I 0.317 0.047 0.050 0.013

2/1 6- 38.5 0.330 0.048 0.05I 0.019
2/2 6 - 38.5 0.304 0.043 0.046 0.013
2/3 6 - 38.5 0.319 0.049 0.050 0.011
2/4 6 - 38.5 0.306 0.046 0.046 0.011
2/5 6 - 38.5 0.334 0.052 0.057 0.018
2/6 6- 38.5 0.318 0.047 0.050 0.014

Ave 2i 0.319 0.048 0.050 0.014

3/1 6 - 38.5 0.344 0.046 0.050 0.017
3/2 6- 38.5 0.313 0.046 0.048 0.012
3/3 6- 38.5 0.332 0.047 0.053 0.015
3/4 6- 38.5 0.320 0.049 0.051 0.017
3/5 6- 38.5 0.342 0.054 0.057 0.014
3/6 6 - 38.5 0.309 0.048 0.050 0.014

Ave 3 0.327 0.048 0.052 0.015

Max. Lower
Penetration

(in.)
0.043
0.056
0.042
0.025
0.051
0.031

0.041

0.063
0.044
0.036
0.050
0.060
0.052

0.051

0.056
0.037
0.050
0.065
0.054
0.054

0.053

Surface
Resistance

(ttf_)

25
20
21
18
15
20
20

30
27
33
30
40
39
33

21
22
15
20
17
20
19

Table 82. Results from Day Two of Set Two Pre-Weld Cleaning Test 0.I00"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

I.D. Weld Heat Nugget Min. Upper Max. Upper Min. Lower Max. Lower Surface
Set/# Diam. Penetration Penetration Penetration Penetration Resistance

(Cvc. - %) (in.) (in.) fin.) (in.) (in.) (tt.O)
1/7 6"- 38.5 0.355 0.045 0.051 0.017 0.056 20
1/8 6 - 38.5 0.320 0.043 0.046 0.011 0.037 21
1/9 6- 38.5 0.329 0.049 0.050 0.013 0.036 21

1/10 6- 38.5 0.308 0.040 0.040 0.0il 0.028 20

1/11 6 o 38.5 0.325 0.046 0.048 0.015 0.050 26
1112 6 - 38.5 0.281 0.052 0.053 0.015 0.046 25

Ave 1 0.320 0.046 0.048 0.014 0.042 22

2/7 6- 38.5 0.352 0.055 0.058 0.019 0.060 21

2/8 6 - 38.5 0.325 0.045 0.045 0.013 0.054 20
219 6- 38.5 0.332 0.054 0.056 0.019 0.068 21

2/10 6 - 38.5 0.314 0.047 0.048 0.012 0.044 21
2/11 6- 38.5 0.333 0.046 0.050 0.012 0.047 20

2112 6 - 38.5 0.321 0.049 0.050 0,0!4 0.057 22
Ave 2 0.330 0.040 0.051 0.015 0.055 21
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Table 83. Results from Day Three of Set Two Pre-Weld Cleaning Test 0.100"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

I.D. Weld Heat Nugget Min. Upper Max. Upper Min. Lower Max. Lower Surface
Set/# Diam. Penetration Penetration Penetration Penetration Resistance

(C-'vc. - %) (in,) fin.) (in,) (in.) (in.) (uf2)
1/13 6- 38.5 0.323 0.045 0.046 0.015 0.046 8

1/14 6 - 38.5 0.349 0.054 0.056 0.017 0.054 8
1/15 6 - 38.5 0.342 0.045 0.049 0.017 0.056 11
1/16 6- 38.5 0.333 0.051 0.053 0.015 0.054 6
1/17 6- 38.5 0.346 0.049 0.051 0.015 0.060 8
1/18 6 - 38.5 0.228 0.058 0.060 0.019 0.061 13

Ave 1 0.337 0.050 0.053 0.016 0.055 9

2/13 6 - 38.5 0.319 0.043 0.046 0.007 0.036 23
2/14 6- 38.5 0.321 0.047 0.049 0.013 0.029 15
2/15 6- 38.5 0.336 0.051 0.053 0.016 0.058 13
2/16 6- 38.5 0.296 0.056 0.063 0.015 0.045 15
2/17 6- 38.5 0.332 0.048 0.052 0.014 0.050 13

2/18 6 - 38.5 0.280 0.042 0.045 0,016 0.032 17
Ave 21 0.314 0.048 0.051 0.014 0.042 16

i

w

n

Table 84. Results from Day Four of Set Two Pre-Weld Cleaning Test 0.100"
7475-T62 Joined to 0.190" 2219-T81 Aluminum.

I.D. =Weld Heat Nugget Min. Upper Max. Upper MAn. Lower Max. Lower Surface
Set/# Diam. Penetration Penetration Penetration Penetration Resistance

(Cvc. - %) (in,) (in.) (in.) (in.) (in,) (_f2)
1/19 6 - 38.5 0.255 0.043 0.046 0.006 0.013 5
1/20 6- 38.5 0.322 0.050 0.052 0.015 0.046 10
1/21 6 - 38.5 0.344 0.056 0.058 0.018 0.067 12
1/22 6 - 38.5 0.300 0.045 0.047 0.016 0.053 15
1/23 6 - 38.5 0.322 0.057 0.059 0.018 0.064 22

1/24 6 - 38.5 0.221 0.050 0.054 0.015 0.037 30
Ave 1 0.311 0.050 0.053 0.015 0.047 16

2/19 6- 38.5 0.331 0.061 0.063 0.018 0.051 16
2/20 6 - 38.5 0.303 0.043 0.044 0.019 0.052 20
2/21 6- 38.5 0.317 0.056 0.058 0.008 0.029 I5
2/22 6 - 38.5 0.310 0.040 0.041 0.013 0.015 17
2123 6 - 38.5 0.329 0.061 0.064 0.014 0.054 18
2/24 6 - 38.5 0.321 0.052 0.053 0.008 0.019 23

Ave 2 0.319 0.052 0.054 0.013 0.037 18
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Table 85. Results from Day Five of the Pre-Weld Cleaning Test 0.100" 7475-T62
Joined to 0.190" 2219-T8i Aluminum.

I.D. Weld Heat Nugget Min. Upper Max. Upper Min. Lower Max. Lower Surface
Set/# Diam. Penetration Penetration Penetration Penetration Resistance

(CvcL- %) (in.) (in.) (in.) (in.) (in.) (ttf2)
1/25 6 - 38.5 0.361 0.046 0.053 0.014 0.047 11
1/26 6 - 38.5 0.315 0.053 0.056 0.013 0.058 10
1/27 6- 38.5 0.311 0.054 0.055 0.013 0.031 5
1/28 6- 38.5 0.330 0.053 0.0459 0.012 0.060 6
1/29 6 - 38.5 0.326 0.054 0.058 0.012 0.053 I 1

1/30 6 - 38.5 0.317 0.053 0.054 0.015 0.03_ 20
Ave 1 0.327 0.052 0.056 0.013 0.048 1 1

2125 6- 38.5 0.339 0.049 0.051 0.017 0.030 15
2126 6 - 38.5 0.293 0.043 0.046 0.011 0.025 11
2127 6 - 38.5 0.281 0.023 0.041 0.002 0.003 25
2/28 6 - 38.5 0.296 0.042 0.043 0.009 0.014 20
2/29 6- 38.5 0.308 0.050 0.051 0.007 0.019 20
2/30 6 - 38,5 0.313 0.051 0.052 0.012 0.030 21

Ave 2 0.305 0.043 0.047 0.010 0.020 19

3/25 6 - 38.5 0.340 0.058 0.061 0.015 0.050 19
3/26 6 - 38.5 0.323 0.038 0.040 0.009 0.020 15
3/27 6- 38.5 0.338 0.046 0.048 0.012 0.028 22
3/28 6 - 38.5 0.322 0.040 0.042 0.010 0.024 14
3/29 6 - 38.5 0.358 0.049 0.054 0.012 0.038 11
3/30 6- 38.5 0.356 0J047 0.049 0.007 0.032 13

Ave 3 0.340 0.046 0.049 0.013 0.032 ..... 16

4.3.2.1.5 Weld Cycle Tolerance

A weld heat sensitivity test was conducted in order to determine how high or low the weld

heat could be set (tolerance off of optimum setting) and still obtain acceptable spot welds. The

results from the tests for the tests are shown as Figures 153 and 155. The heat sensitivity versus

nugget diameter show that below 32 percent heat, the nugget diameter for the 7475/2219 A1

combination falls below the minimum required by the MIL-W-6858 standard. The nugget diameter

continues to climb until approximately 37 percent heat is reached after which it begins to decline

again, and expulsion is observed.
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The heat sensitivity versus nugget penetration graph (Figure 154) shows that below 33

percent heat, the penetration into the lower sheet (the 2219-T81 skin) is below the requirement

called out by the MIL-W-6858 specification. However, as the heat is increased, the percentage of

penetration into the lower sheet is increased which if excessive would manifest itself into a

reduction in skin efficiency. The lap-shear values versus heat sensitivity are shown as Figure 155.
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The increase in lap shear with weld heat percent is clearly shown on the chart. Based upon the

behavior noted during the tests, a weld heat of 35% (the heat is adjusted upward slightly for

multiple spot panels in order to account for the shunting effects) was selected for weld certification.
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Figure 153. Weld Heat Sensitivity Versus Nugget Diameter for 0.100" 7475-T62 A1 Joined to
0.190" and 0.090" 2090-T62 Joined to 0.190" 2090-T83 A1-Li.
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Figure 154. Weld Heat Sensitivity Versus Nugget Penetration into Lower Sheet for 0.100" 7475-
T62 A1 Joined to 0.190" and 0.090" 2090-T62 Joined to 0.190" 2_T83 AI-Li.
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All three values (nugget diameter, nugget penetration, and lap shear) are very sensitive to

changes in the overall heat input into the system. All three parameters increased as the heat

increased from 29 to 38 percent and definite lowest acceptable heat input (33 %) to the system was

recorded for the material combination. Upper boundaries are dependent upon acceptable loss in

skin efficiency prior to expulsion of the weld to the design.

4.3.2.2 Resistance Spot Weld Characterization 2090-T62 to 2090-T83 Aluminum-Lithium

The resistance spot weld schedule development was initiated for 0.090" 2090-T62 to

0.190" 2090-T83 aluminum-lithium material using a Taguchi L9 array (refer to Table 86).

Table 86. L9 Taguchi Test Matrix for 0.090" 2090-T62 AI-Li joined to 0.190"
2090-T83 AI-Li.

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

A
Weld Time

Cvcles

5

5

5

6

6

6

7

7

7

B
Weld Heat

Percent

26

32

38

26

32

38

26

32

38

C
Weld Force

Pounds

2400

2700

3000

2700

3000

2400

3000

2400

2700

D

Forge Force
Pounds

6000

6500

7000

700O

6000

6500

6500

7000

6000

w

w

r

Each test schedule (one through 9) was performed with ten replicate specimens that were

evaluated metallographicaUy, through lap shear, and by tensile for sheet efficiency (three lap

shears, four macros, and three sheet efficiency test specimens). Average test values were obtained

for each test (one through 9) and the values are presented in Table 87. The data was adjusted to

incorporate reduction in the average values due to weld expulsion. The adjusted average values

were input into the L9 response tables in order to determine the most significant factors and the

optimum weld schedule for the current material combination. The data showed the same trend as

previous Taguchi tests, in that the most significant factor for the weld is the heat, followed by the

weld force and time. The optimum weld schedule derived from the response tables is as follows:

Weld Time = 5 Cycles, Weld Force = 3000 pounds, Weld Heat = 32 percent, Forge Force = 7000

pounds. Confirmatory tests were conducted using the aforementioned schedule. The resistance
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spot weld macro examinations (percent penetration, and nugget diameter) and shear testing, and

sheet efficiency results from optimum resistance spot weld schedule generated with the Taguchi

array are shown on Table 88.

I

m
m

Table 87. Average Test Results for 0.090" 2090-T62 to 0.190" 2090-T83 AI-Li

L9 Taguchi Array.

Test

I.D.

1
2
3
4
5
6
7
8
9

*Note:

Table

Nugget Diameter Nugget Penetration
(inch)
0.360 ....
0.406
0.228
0.376
0.485

0
0.404
0.373

0

% Upper Sheet 1% Lower Sheet
54.2 17.78

61.15 30.28
33.35 12.5
44.43 23.03
70.85 41.45

0 0
51.4 34.20

58.33 38.83
0 0

Shear

(pounds)
2661
3295
3480
2656
3447

0
2940
27O0

0

Sheet Efficiency
(ratio, %)*

91.3
89.6
88.2
90.0
87.3

0
88.0

0
0

i

Sheet efficiency is a ratio of the welded to non-welded Ftu of the skin material.

88. Conformity Test Results for 0.090" 2090-T62 to 0.190" 2090-T83 AI-

Li Optimized Resistance Spot Weld Schedule.

Schedule:

Force = 7000
Weld Time= 5 Cycles, Weld Force = 3000 pounds, Weld Heat = 32 percent, Forge

_ounds

Nugget Diameter
inch

0.410

0.415

0.415

0.410

0.4125

Nugget Penetration

% Upper Sheet 1% Lower Sheet

66.7 34.2

72.2 31.6

Shear
Lbs.

72.2

66.7

31.6

34.2

69.5 32.9

2895

2845

2538

2759

Weld Quality

good
good
good
good
good
good
good

: Averages

The MIL-W-6858 specification for resistance spot welded aluminum fora 0.090" to 0.190"

thickness combination requires the following:

Minimum Average Shear Strength = 1570 pounds
Minimum Nugget Diameter = 0.240"
Nugget Penetration: Minimum = 20% of thinner sheet

Maximum = 80% of thinner sheet
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The results from the confirmatory run exceed the standards requirements in all classifications, and

the schedule was utilized during the remainder of the testing with this thickness ratio.

4.3.2.2.1 Weld Cycle Development

_ _i ......
! _

Resistance spot weld certification tests were performed according to MIL-W-6858D class A

requirements. The test was used to certify weld schedules developed by Taguchi design of

experiments techniques for optimization of a process. The test results are reported in Table 89.

Table 89. Weld Certification Test Results for 0.090" 2090-T62 to 0.190" 2090-

T83 AI-Li Optimized Resistance Spot Weld Schedule.

Schedule:

27 psi, Squeeze = 55
Coupon I.D. Nugget Diameter

inch

Weld Time = 5 Cycles, Weld Force = 19 psi, Weld Heat = 32 percent, Forge Force --

CI2-1

CI'2-2
CT2-3
CT2-4
CT2-5
CT2-6
CI'2-7
C1"2-8
CT2-9

CI'2-10
CT2-11
CT2-12
C'I2-13
CI2-14
CT2-15
CT2-16
C'I2-17
CT2-18
CT2-19
CI2-20
CI2-21
CT2-22
cr2-23
CT2-24
CT2-25

0.395

0.415

0.410

0.400

0.410

0.406Average

Nugget Penetration

% Upper Sheet % Lower Sheet

55.5

61.1

66.6

61.1

61.1

62.2
la

33.0

33.0

33.0

33.0

33.0

33.0

Shear
Lbs.

2940
2834
3430
3105

3012
2995
3243
3203

2967
3276
3555
3344

3196
3119
3352
3272

3034
3303
301I
2907

3155

The MIL-W-6858 specification for resistance spot welded aluminum -lithium for a 0.090"

to 0.190" thickness combination requires the following:

=
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PercentDeviation -25.0% - 12/5%
_CalculatedDeviation 2366 2761

Mean +12.5%
3155

18out of 20 testvalues
fall within thisrange?

Minimum AverageShearStrength= 1825pounds
Minimum NuggetDiameter= 0.250"
NuggetPenetration: Minimum = 20%of thinnersheet

Maximum= 80%of thinnersheet

OK
OK
OK
OK

+25.0%
3944

YES

The weld schedule for the 0.090" 2090-T62 joined to 0.190" 2090-T83 aluminum-lithium passed

the certification test.

Resistance Spot Weld Spacing Tests were performed to determine the effects of the

resistance spot weld spacing on weld strength and quality. Test specimens were welded using the

certified weld schedule with spot spacings of .075", 1.00", 1.25", and 1.50". The secondary

current, nugget expansion, dynamic resistance, weld force, forge force, lap shear values, weld

penetration, and nugget diameters were recorded during the weld process.

Thirty-five 0.090" 2090-T62 to 0.i90" 2090-T83 spot weld spacing test specimens and

seven single spot test specimens were welded. The single spot specimens were welded for use as

control specimens to compare with spot spacing specimens. For each of the four different spot

spacing configurations and single spot specimen, seven test coupons were welded. The seven

specunens provided four micro cross sections and three lap shears test specimens. Table 90 shows

the results of the spot spacing test.

From Table 90 and Figure 156, the average single-spot nugget diameter was 0.418", and

the 1.50", 1_25", 1.00" and 0.75" spot spacing average nugget diameters were 0.399", 0.401",

0.372" and 0.363", respectively. There was a decrease of 0.019" from the single-spot value to the

1.50" spot spacing value. The nugget diameter values for spot spacing from 1.50" to 0.75"

showed a trend towards decreasing nugget diameter.

From Table 90 and Figure 157, the average single-spot lap shear was 3,417 lbs., and the

...... .... _ :'= : _.... 3154, 2876, 3206,1.50", 1.25", i.00", and 0.75" spot spacing average nugget diameters were

and 3024 lbs., resp_vely. There wasa decrease of 263 lbs. from the single-spot value to the

1.50" spot spacing value. The lap shear values for spot spacing from 1.50' to 0.75" did not reveal

any conclusive wends.
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NUGGET DIAMETER
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0.45

0.4 t

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.75

p_--

1 1 1

1.00 1.25 1.50

SPOT SPACING, inch

Figure 156. Resistance Spot Weld Spacing Test. Nugget Diameter Versus Spot Spacing 0.090
inch 2090-T62 to 0.190 inch 2090-T8
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Figure 157. Resistance Spot Weld Spacing Test. Lap Shear Versus Spot Spacing 0.090 inch
2090-T62 to 0.190 inch 2090-T8
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From Table 90 and Figures 158 and 159, the spot weld nugget penetration into the 0.090"

sheet showed a slight increase in minimum penetration and a slight decrease in maximum

penetration with the closer spot weld spacing. The penetration into the 0.190" sheet showed fairly

uniform minimum penetration, but the values for maximum penetration showed erratic behavior

over the range tested. The overall change in nugget penewation in relationship to the spot spacing

was insignificant.

Table 90. Resistance Spot Spacing Test Results for 0.090 inch 2090-T62 to .190
inch 2090-T83 Aluminum-Lithium.

Schedule: Weld Heat (32 percent), Weld Time (5 cycles), Weld Force (19 psi), Forge Force (27

psi)
Spot Weld

Spacing
finch)

0.75

1.00

1.25

1.50

Squeeze (55).
Coupon I.D.

2-1-1
2-1-2
2-1-3
2-1-4
2-1-5
2-1-6
2-1-7

Average
2-2-1
2-2-2
2-2-3
2-2-4
2-2-5
2-2-6
2-2-7

Average
2-3-1
2-3-2
2-3-3
2-3-4
2-3-5

2-3-6
2-3-7

Average
2-4-1
2-4-2
2-4-3
2-4-4
2-4-5
2-4-6
2-4-7

Average

Nugget
Diameter

(inch)

0.365

0.366

0.355

0.364
0.363
0.366

0.365

0.366

0.392

0,372
0.396

0.382

0.417

0.407
0.401
0.402

0.417

0.377

0.398
0.399

Nugget
Upper Sheet

(inch)

.048 - .048

.037 - .037

.048 - .046

.039 - .044

.043
.043 - .046

.045 - .049

.045 - .048

.042 - .046
,045

•039 - .046

.040 - .053

.045 - .050

.037 - .042
.044

.039 - .047

.038 - .043

.039 - .054

.036 - .040
.042

Penetration

I Lower Sheet(inch)

.021-.032

.023-.037

.019-.043

.021-.036
.029

.020 -.037

.020-.040

.020-.040

.026-.037
,030

.022-.052

.023-.046

.023-.055

.026-.047
.037

.020-.034

.025-.031

.022-.035

.019 -.038
.048

Shear

Strength
(Lbs)

2759

3108

3206

3024

2925

3467

3226

3206

2779

2907

2942

2876

2538

3341

3582

3154

4-238
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Table 90 (continued). Resistance Spot Spacing Test Results for 0.090 inch 2090-
T62 to .190 inch 2090-T83 Aluminum-Lithium.

Schedule:

psi)
Spot Weld _

Spacing
(inch)

Single Spot

Weld Heat (32 percent), Weld Time (5 cycles), Weld Force (19 psi), Forge Force (27

, Squeeze (55).
Coupon I.D.

2-5-I
2-5-2
2-5-3
2-5-4
2-5-5
2-5-6
2-5-7

Average

Nugget
Diameter

(ioch)
0.416

0.415

0.425

0.415
0.418

Nugget Penetration
Upper Sheet ] Lower Sheet

(inch) I (inch)
.040 - .047

.033 - .043

.036 - .050

.035 - .050
.042

.028 - .040

.023 - .044

.022 - .049

.021 - .042
.033

Shear

Strength
(Lbs)

3510

3257

3485

3417

In conclusion, the shunting effect of close spot spacing did not degrade the integrity of the

spot weld for this material combination and spot weld schedule. This certified weld schedule could

be used to spot weld 0.090" 2090-T62 to 0.190" 2090-T83 at spot spacings of 0.75" or greater.
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N

E

T

R

A

T

I

O

N

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

0.75

_---O-

MIL-W-6858 Minimum, (0.072" Max)

I I

1.00 1.25

SPOT SPACING, Inch

--a'q

-II

!

1.50

.m MIN. PENETRATION-o. MAX. PENETRATION

Figure 158. Resistance Spot Weld Spacing Test. 0.090" Sheet Penetration Versus Spot Spacing
for 0.090 inch 2090-T62 to 0.190 inch 2090-T8
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Figure 159. Resistance Spot Weld Spacing Test. 0.190 inch Sheet Penetration Versus Spot
Spacing for 0.090 inch 2090-T62 to 0.190 inch 2090-T8

4.3.2.2.2 Ambient Test Data

Shee_efficiency tests were performed on the 2090-T83 materiai'in order to determine the

"knockdown" against the ultimate tensile strength for a given skin section exposed to the heat

generated d_gthefo_fion of a Spotwdd. Tensile coupons w_ prep_ by machining 2" x

12" x 0.190" thick pieces into a "dogbone" shape with the gage section reduced in width to 1.00

inch. The sheet efficiency test results are shown in Table 91 for 2090-'I"83 skin.

Table 91. 0.190" 2090-T83
Ultimate Tensile Strength)

Material Type Test Temperature Ftu
i)

2090-T83 20 65.9

* Note: Ratio taken from actual test data rather than allowable data.

Aluminum-Lithium Skin Efficiency (or Reduction in
After Spot Welding of 0.090" 2090-T62 Stiffeners.

Sheet Efficiency
(%)

65.9/78.3*= 84.15
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The weld schedules developed for the crippling test panels (modified weld schedule

developed for thinner section based upon Taguchi response) were verified through certification

testing. The results from the tests axe shown in Tables 92.

Table 92. Weld Schedule Certification Test for 2090 Crippling Test Panels.

Schedule:

(24 ps:
Coupon ID

CT5-1
CT5 -2
CT5-3
CT5-4
CT5 -5
CT5-6
CT5 -7
CT5-8
CT5 -9
CT5-10
CT5-11
CT5-12
CT5-13
CT5-14
CT5-15
CT5-16
CT5-17
CT5-18
CT5-19
CT5-20
CT5-21
CT5-22
CT5-23
CT5-24
CT5-25

Weld Heat (35 percent), Weld Time (6 cycles), Weld Force (16 psi), Forge Force

), Squeeze (55).
Nugget Diameter

(inch_

0.335

0.343

0.344

Nugget Penetration
% upper Sheet 1% Lower Sheet

I

30.0 - 39.7

38.9 - 50

36.6 - 49

35.5 - 46

38.9 - 53

Average
MiI-W-6858D S

0.338

24.7

34.7

33.8

32.9

38.9

Shear

0.340

18 out
0.340

_ecification Lim

0bs,)
2234
1886
2080
2155

2087
2045
2012
2097

2024
1996
2210
2708

2238
2180
2423
2274

2064
2229
2154
2413

! 36-47 33.0 2175

itsfor Acceptable Lap Shear Values:

Test Values Must Fail Within This Range to Pass Evaluation.

2090-T62
Thickness

(mch)
0.068
0.069
0.071
0.072
0.073
0.074
0.074
0.074
0.073
0.072
0.071
0.070
0.068
0.069
0.071
0.072
0.074
0.074
0.085
0.076
0.075
0.074
0.074
0.073
0.072

0.072

of 20

Percent Deviation -25.0%

Calculated Deviation (Lbs) 2182

-12.5% Mean +12.5% +25.0%
2545 2909 3272 3636

Mil-W-6858D Minimum Values for Thinnest SheeL

Minimum Average Shear Strength: = 1202 Lbs
Minimum Nugget Diameter = 0.220 inch

Nugget Penetration: Minimum = 20% of thinner sheet
Maximum = 80% of thinner sheet
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The material supplied for the certification test consisted of formed material that had been

solution heat treated and artificially aged to peak strength (-T62 condition) and sectioned into 1" x

4" test coupons. The certification test panel consisted of resistance spot welding a multi-spot (25

spot weld) test panel configuration, radiographically inspecting the panels and sectioning the panel

into lap shear and meta_ographic specimens.

The weld schedule certification report for the 0.072"+10% 2090-T62 joined to 0.190"

2090-T83 material combination (refer to Table 92) had an average nugget diameter of 0.340" with

a maximum value of 0.344" and a minimum of 0.335". The minimum nugget diameter required

per the military specification was 0.212" for a class A weld. The nugget penetration into the

thinner sheet was a minimum of 30% with a maximum of 53%. The nugget penetration into the

thicker sheet had a minimum of 25% and a maximum of 42%. The requirements for nugget

penetration are that it meet or exceed twenty percent of the thickness of the thinner sheet into both

sheets, and that the maximum nugget penetration shall not exceed eighty percent of the thickness of

each sheet. The average lap shear test value was 2175 pounds, with a minimum of 1886 pounds.

Ninety percent of the individual test values fell within the required + 12.5% range of the average

value, and the remaining values were within the + 25% range. The specification requirement for

average lap shear with a 0.072" thinner sheet is 1063 pounds with a minimum of 8,17 pounds. The

spot weld schedule met the military requirements for class A welds.

4_3.2.2.3 _Cryogenic Test Data

Sheet efficiency tests were performed under cryogenic temperature on the 2090-T83

material in order to determine the "knockdown" against the ultimate tensile strength for a given skin

section exposed to the heat generated during the formation of a spot weld. Tensile coupons were

prepared by machining 2" x 12" x 0.190" thick pieces into a "dogbone" shape with the gage

section reduced in widda to _-incla. _e cryogenic sheet efficiency test results are shown in

Table 93 for 2090-T83 skin.

Cryogenic Iap shear_tes_ on tla_0._0" 2_-T62 joined to 0Ag0" 2090-T83 material

combination were performed in order to evaluate the response of the spot werd_p_uced by the

certified weld schedule operating under cryogenic temperatures. Fifty spot weld coupons were

welded in sequence using the previously certified weld schedule. Forty of the fifty spot welded

specimens were test_ '_ _iap Shear at _ogenic temPeratures;_ twenty at LN2 temperatures of

-320°F and twenty at LH2 temperature of -423°F. The remaining ten coupons were processed for

4-242
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micro cross-section dam. The lap shear and weld nugget measurements are shown in Table 94 and

Table 95.

Table 93. 0.190" 2090-T83 AluminumLithium Skin Efficiency (or Reduction in

Ultimate Tensile Strength) After Spot Welding of 0.090" 2090-T62 Stiffeners.

Material Type

2090-T83

Test Temperature

-320

-423

Ftu

(ksi)

76.1

87.7

Sheet Efficiency

(%)

76.1/95.7 = 79.53

87.7/103.9 = 84.4

7

- L=

L

| L7

m

From the LN2 data in Table 94, the average lap shear test value was 4206 lbs., and the

minimum value was 3730 lbs. One hundred percent of the individual values were within the

5: 12.5% range of the average test value. The measured nugget penetrations and diameters for all

macros were within MIL-W-6858D requirements.

From the LI--h data in Table 95, the average lap shear test value was 4299 lbs., and the

minimum value was 3720 lbs. Eighty-five percent of the individual test values were within the

5: 12.5% range of the average test value. The remaining 15% were within the + 25% range of the

average test value. The measured nugget penetrations and diameters for all macros were within

MIL-W-6858D requirements.

4._.2,2,4 Exposure After Cleaning

Pre-Weld Cleaning Tests were performed to determine acceptable cleaning methods for the

aluminum-lithium alloy and determine the out-time after cleaning duration in which acceptable spot

welds could be produced with the 0.090" 2090-T62 to 0.190" 2090-T83 material. The spot weld

time duration test was planned forten davy's with three tests per day totalling tothirty separate test

periods; however, since no welding was performed on weekends, the total duration time was

fifteen days. Secondary current, nugget _expansi°n',_ _dynamic_ resistance, weld force, forge force,

lap shear values, weld penetration, nugget diameters, and surface resistance were recorded.

Surface resistance readings were recorded prior to welding on both brushed and unbrushed areas

with a resistance analyzer specifically for resistance spot welding.

All spot weld coupons tested were chemically cleaned, and then wire brushed with a

stainless steel brush. As shown in Table 96 and Figure 160, the surface resistance varied up and
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down through the duration of the test, but generally tended to increase gradually. In Table 96,

values of zero were recorded used to signify a 'no reading' due to localized irregularities in the

flatness of the I" x 4" 2090-T62 spot weld coupons.

Table 94. LN 2 (-320°F) Cryogenic Resistance Spot Weld Test Results.0.090 inch
2090-T62 to 0.190 inch 2090-T83 Aluminum-Lithium

Schedule:

psi), Squeeze (55).
Coupon ID Nugget Diameter

(inch)

Weld Heat (32 percent), Weld Time (5 cycles), Weld Force (19 psi), Forge Force (27

0.400

0.410

0.400

0.425

0.425
0.412

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3 -20
3-21
3-22

3-23
3-24
3-25

Average
Min/Max

Nugget Penetration
% Upper Sheet I% Lower Sheet

44.4- 66.6

38.9 - 61.1

38.9 - 61.1

38.9 - 66.6

44.4 - 61.1
52.2

38.9 / 66.6

38.9 - 66.6

33.3 - 72.2

33.3 - 77.8

33.3 - 61.1

33.3- 50.0
50.0

33.3 / 77.8

Shear

0b_)
4315
3930
4055
4350

4200
4265
4055
3730

4530
4425
4600
4175

4360
4215
4025
4530

4O00
3910
4115
4440

4206

MiI-W-6858D

Test Values Must Fall Within This Range to Pass Evaluation.

Percent D_viation -25.0% - 12.5% Mean

CalculatedDeviation (Lbs) 3155 3680 4206

Mil-W-6858D Minimum Values for Thinnest Sheet

Minimum Average Shear Strength: = 1570 Lbs
Minimum Nugget Diameter = 0.240 inch
Nugget Penetration: Minimum = 20% of thinner sheet

Maximum = 80% of thinner sheet

Specification Limits for Acceptable Lap Shear Values: 18 out of 20

+12.5% +25.0%

4732 5258
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Table 95. LH 2 (-423°F) Cryogenic Resistance Spot Weld Test Results.0.090 inch
2090-T62 to 0.190 inch 2090-T83 Aluminum-Lithium

Schedule" _Weld Heat (32 percent), Weld Time (5 cycles), Weld Force (19 psi), Forge Force (27

psi), Squeeze (55).
Coupon ID Nugget Diameter

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-I8
4-19
4-20
4-21
4-22
4-23
4-24
4-25

(inch)
Nugget Penetration

% Uppqr Sheet ! % I.,owcr Sheet

0.410

0.425

0.440

0.415

0.425

44.44 - 66.6

44.4 - 61.1

38.9 - 61.1

38.9- 66.5

33.3 - 61.1

27.8 - 55.5

27.8 - 72.2

27.8 - 72.2

27.8 - 72.2

33.3 - 66.6

Shear
(lbs)

4420
4840
4180
4230
3900

4900
4600
3720

4250
4110
3860
4050

4060
4780
3970
4540

4070
4560
4560
4400

Average 0.423 52.2 47.2 4299
Min/Max 33.3 / 66.6 33.3 / 72.2

E

L

r

E.

MiI-W-6858D Specification Limits for Acceptable Lap Shear Values: 18 out of 20
Test Values Must Fall Within This Range to Pass Evaluation.

Petv,.ent Dfvia_iQn -25.0%
Calculated Deviation (Lbs) 3224

-12.5% Mean +12.5% +25.0%
3762 4299 4836 5374

Note: 17 out of 20 pass with the 12.5% deviation.

Mil-W-6858D Minimum Values for Thinnest Sheet.

Minimum Average Shear Strength: = 1570 Lbs
Minimum Nugget Diameter = 0.240 inch
Nugget Penetration: Minimum = 20% of thinner sheet

Maximum = 80% of thinner sheet
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Table 96. Resistance Spot Welding Pre-Weld Cleaning Test Results for 0.090
inch 2090-T62 to 0.190 inch 2090-T83 Aluminum-Lithium.

Cou_nI.D.

Day I, I2:00PM
2-1-1
2-1-2
2-1-3
2-1-4
2-1-5
2-1-6
2-1-7

Average

Day :2, 12:00PM
2-2-I
2-2-2
2-2-3
2-2-4

2-2-5
2-2-6
2-2-7

Average

Day 3, 12:00PM
2-3-1
2-3-2
2-3-3
2-3-4
2-3-5
2-3-6
2-3-7

Averafe

Day 4, 12:00PM
2-4-1
2-4-2
2-4-3
2-4-4
2-4-5
2-4-6
2-4-7

Average

Day 5, 12:00PM
2-5-1
2-5-2
2-5-3
2-5-4
2-5-5
2-5-6
2-5-7

Average

Nugget
Diameter

(inch)

0.440

0.425

0.425

0.435
0.431

0.435

0.440

0.420

0.405
0.425

0.459

0.413

0.393

0.441
0.427

0.409

0.430

0.423

0.421
0.421

0.423

0.424

0.435

0.392
0.419

Nugget Penetration
Upper Sheet Lower Sheet

(inch) (inch)

.035-.055 .035-.070

.035-.060 .027-.065

.033-.055 .030-.060

.035 -.055 .025 -.065
.035 - .056 .029 - _65

•036-.060 .030-.050

•035 -.065 .027 -.070

•035-.065 .025-.060

.033 -.055 .030-.060

.035 .061 .028 .060

•042-.060 .023-.041

•043-.052 .024-.052

•042-.057 .019-.037

.048 -.048 .018 -.045
.044 .047 .021 - .044

•041-.051 .025-.038

.034 -.046 .026-.055

•040 -.048 .026-.048

•033 -.0542 .029 -.055
.037 ,047 .027 .... 049

•041-.060 .025-.033

.032 -.043 .034-.059

•037 -.051 .027 -.051

•033 -.038 .026-.048
•036 .048 .028 - .048

Shear

Strength

(Lbs)

3406

3533

3147

3362

3765

2870

2749

3128

3604

3479

3386

3490

3539

3262

3394

3398

3470

3195

3534

3400

S/R
Unbrushed

48
50
48
50
55
65
55

53

54
57
54
65
55

55
57

60

60
82
55
67
55
63

50
40
50
60
69
64
69
57

63
63
63

60
73
63
73

65

S/R
Brushed

(uf2)

20
20
25
16
I5
18
24
20

31
85

24

30

43

58

50
45
50
51

36
24
21
47
50
51
48
40

36
43
25
60
45
53
51
45
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Table 96 (continued). Resistance Spot Welding Pre-Weld Cleaning Test Results
for 0.090 inch 2090-T62 to 0.190 inch 2090-T83 Aluminum-Lithium.

] [3

=

t..-

Coupon I.D.

Day 8, 12:00PM
2-6-1
2-6-2
2-6-3
2-6-4
2-6-5
2-6-6
2-6-7

Average

Day 9, 12:00PM
2-7-1
2-7-2
2-7-3
2-7-4
2-7-5
2-7-6
2-7-7

Average

Day I0, 12:00P
2-8-1
2-8-2
2-8-3
2-8-4
2-8-5
2-8-6
2-8-7

Averaee
Day 11, 12:00PM

2-9-1
2-9-2
2-9-3
2-9-4
2-9-5
2-9-6
2-9-7

Ayera_e

Day 14, 12:00PM
2-10-1
2-10-2
2-10-3
2-10-4

2-10-5
2-10-6
2-10-7

Average

Nugget
Diameter

finch)

0.427

0.406

0.429

0.422

0.421

0.405

0.434

0.437

0.428
0.426

0.456

0.434

0.419

0.397
0.427

0.449

0.439

0.411

0.416
0.429

0.423

0.406

0.389

0.411
0.407

Nugget Penetration

Upper Sheet[ Lower Sheet
(inch'} I

.039 - .048

.027 - .039

.046 - .055

.030 - .046
.0336- .043

.030 - .046

.039 - .044

.040 - .055

.035 - .044
.036 .047

.031 - .054

.037 - .047

.038 - .049

.039 - .056
.036 .052

.025 - .047

.031 - .046

.035 - .047

.041 - .053
.033 - .048

.032 - .045

.037 - .049

.035 - .047

.027 - .043
.033 . .046

(inch)

.024 - .051

.034 - .063

.023 - .042

.028 - .038
.027 - .049

.028 - .038

.025 - .054

.027 - .040

.027 - .052
.027 - .046

.022 - .041

.025 - .053

.031 - .041

.019 - .039
.024 - .044

.019 - .049

.028 - .052

.025 - .039

.025 - .037
.024 - .044:

.024 - .035

.030 - .036

.021 - .033

.020 - .033
.024 - .034

Shear

Strength
fLb_)

3250

3575

3445

3423

3080

3525

3105

3237

3072

3299

3475

3282

3224

3548

3524

3432

3162

3128

3162

3151

4-247

S/R
Unbrushed

82
56
82
56
75
50
75
68

90
95
90
81
73
76
73
83

121
115
121
110
130
109
130
119

90
75
90
66
84
61
84
79

90
105
90
77
80
64
80
84

S/R
Brushed

(Lt.O)

45
36
56
31
37
35
27
33

65
53
67
35
51
56
75
57

55
50
93
44
69
61
75
64

65
55
50
30
65
20
60
49

45
33
64
43
20
27
27
37
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Figure 160. Pre-weld Cleaning Test, Surface Resistance Versus Tirne.0.090 inch 2090-T62 to
0.190 inch 2090-T83. ii

I!

Lap shear values, as shown in Table 96 and Figure 161, did not vary significantly from m• !

Day 1 to 15. The average shear value was 3,330 lbs., compared to the spot weld certification • +

value of 3,154 lbs. The high and low values were 3,490 lbs. and 3,128 lbs., respectively, giving [] |

a range of 362 lbs. These high and low valUes v_ed from -6% to +5% of the 3,330 lbs. average _ !

value.
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Figure 161. Pre-weld Cleaning Test, Lap Shear Versus Time.0.090 inch 2090-T62 to 0.190 inch
2090-T83.
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Nugget diameters, recorded in Table 96 and Figure 162, did not vary significantly from

Day 1 to 15. The average nugget diameter was 0.423", compared to the spot weld certification

value of 0.406". The high and low values were 0.431 and 0.407", respectively, giving a range of

0.024". These high and low values varied from -4% to +2% of the 0.406" average value.

0.45

N

U 0.4
G
G

E 0.35

T

D 0.3

I

A 0.25
M

E
T 0.2

E

R 0.15

0.1
!

N
C 0.05

H

0

___in •

................. MIL-_t-68"58" _llin Nugget Oia - 0.240"

Figure 162.

I I ; I : q : : I : I I I I

2 3 4 5 6 7 B 9 10 11 12 13 14 15

DAYS

Pre-weld Cleaning Tes_ Nugget Diameter Versus Time.0.090 inch 2090-T62 to
0.190 inch 2090-T83.

The minimum nugget penetration (as shown in Table 96 and Figure 163) into the 0.090"

sheet had an average value of 0.036". The high and low values were 0.044" and 0.033",

respectively, giving a range of 0.011". These high and low values varied from -8% to +22% of

the 0.036" average value. The maximum penetration into the 0.090" sheet had an average value of

0.051". The high and low values were 0.061" and 0.046", respectively, giving a range of 0.015".

These high and low values varied from -10% to +20% of the 0.051" average value.

=

L.

The minimum nugget penetration into the 0.190" sheet (refer to Table 96 and Figure 164)

had an average value of 0.026"'. The high and low values were 0.029" and 0.021", respectively,

giving a range of 0.008". These high and low values varied from -19% to +20% of the 0.026"

average value. The maximum penetration into the 0.090" sheet had an average value of 0.048".

The high and low values were 0.065" and 0.034", respectively, giving a range of 0.031". These

high and low values varied from -29% to 435% of the 0,048" average value.

L_ 4-249



In conclusion,the0.090"2090-T62to 0.190"2090-T83weld materialcombinationcanbe

successfully resistancespot welded per MIL-W-6858D requirements up to fifteen days after
chemicalcleaningwith only paper(blue-line)packaging.
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0.018" minimum or 20% o! 0.090"
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Figure 163. Pre-weld Cleaning Test, 0.090 inch Sheet Penetration Versus Time.
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Figure 164. Pre-weld Cleaning Test, 0.190 inch Sheet Penetration Versus Time.
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4.3.2.2.5 Weld Cycle Tolerance

Heat sensitivity of 0.090" 2090-T62 joined to 0.190" 2090-T81 material combination was

run to determine the effects that variation of the heat would have on the weld quality. The purpose

of the test was to determine the range of heat settings that would produce an acceptable weld. The

range of weld heat was determined by increasing the weld heat percent until weld expulsion started

to occur and decreased until insufficient nugget penetration started to occur. The other parameters

(weld time, weld force, and forge forced) were held timed during the test. The results from the

tests are shown graphically as nugget diameter and nugget penetration versus weld heat percent,

and lap shear strength versus weld heat percent in Figures 153 through 155. The selected weld

heat percent selected from the heat sensitivity test was 32%. The 32% heat value was used during

the weld certification tests.

4.3.2.2.6 Weld Repair

The objective of this task was to determine the feasibility of repairing defective resistance

spot welds in the 0.090" 2090-T62 to 0.190" 2090-T83 aluminum-lithium alloy combination.

Defective spot welds were intentionally produced with the aluminum-lithium material combination

from variations to the original certified spot weld schedule (refer to Table 97). Three groups of

defective welds were made: diffusion welds (a reduction in 11 percentage points of heat from the

original certified schedule), undersized nuggets (a reduction in 8 percentage points of heat from the

original certified schedule), and nuggets with cracks or voids (a reduction in 2 percentage points of

heat and the elimination of the forge force from the original certified schedule).

f

r

K,.

J -2 :

Fifteen specimens were spot welded per defect group, and sent to radiographic inspection

for verification of the defect. Each grouping of fifteen was divided into two areas for post-weld

examination: lap sheer testing (six of the samples) and metallographic examination (nine of the

coupons). Three of the six coupons slated for examination by lap shear were re-welded, using

resistance spot weld repair schedules (refer to Table 98), and re-examined by radiographic

inspection to verify correction of the defect. The same procedure for repak welding was used for

five of the metallographic specimens from each defect group.

The examination of the "diffusion weld" specimens resulted in the removal of the defect by

the repair process (refer to Figures 165 and 166). The average shear strength of the diffusion weld

was 2203 pounds and the average shear slrength of the repair weld was 3344 pounds.

4-251



The examinationof the "undersizedspotweld" specimens resulted in the removal of the

defect by the repair process (refer to Figures 167 and 168). The average shear strength of the

undersized weld was 2721 pounds and the average shear strength of the repair weld was 3441

pounds.

The examination of specimens with "cracks and voids in the weld" resulted in the removal

of the defect by the repair process (refer to Figures 169 and 170). The average shear strength of

the cracks and voids in the weld was 3108 pounds and the average shear strength of the repair

weld was 3639 pounds.

Itwas determined that the repair weld process can be successfully used for all of the defect

types examined during this program with the aluminum-lithium materials. However, the repairs

were accomplished with additional heat placed into the system, which is anticipated to further

decrease the skin efficiency. Any quantifiable reduction in skin efficiency is unknown and would

depend upon the total heat input.

Table 97. Defect Weld Schedules for 0.090" 2090-T62 Joined to 0.190" 2090-

T83 Aluminum-Lithium.

I

D

lmi
I

I

l

ID

Defect I.D.

Diffusion Weld

Undersized Weld

iCracks or Voids in

the Weld

Heat Cycles

5

5

5

Heat Percent

24

27

33

Weld Force

(lbs_

2900

2900

2900

Forge Force

flbs)

7000

7000

0

I i.

=

Table 98. Repair Weld Schedules for 0.090" 2090-T62
T83 Aluminum-Lithium.

Joined to 0.190" 2090-
!

I

Defect LD.

Diffusion Weld

Undersized Weld

Cracks or Voids in

the Weld

Heat Cycles

12

12

12

Heat Percent

25

25

28

Weld Force

0b )
2100

2100

2100

Forge Force

fibs)

5300

5300

5300

m

IF

w_
z
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Figure 165. Diffusion Spot Weld in 0.090" 2090-T62 joined to 0.190" 2090-T83 A1-Li.

L

Figure 166. Repaired Diffusion Spot Weld in 0.090" 2090-T62 joined to 0.190" 2090-T83 A1-Li.
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Figure 167. Undersized Spot Weld in 0.090" 2090-T62 joined to 0.190" 2090-T83 AI-Li.
R
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Figure 168. Repaired Undersized Spot Weld in 0.090" 2090-T62 joined to 0.190" 2090-T83 AI-Li.
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Figure 169. Spot Weld with Cracks and Voids in 0.090" 2090-T62 joined to 0.190" 2090-T83
A1-Li.

E_

W

R

IH

h_

L_

w

Figure 170. Spot Weld with Cracks and Voids Repaired in 0.090" 2090-T62 joined to 0.190"
2090-T83 A1-Li.
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4.3.3 FUSION WELD DEVELOPMENT m

Fusion welding is utilized for both the vertical panel to panel joints, and the barrel to major

frame joints. In order to minimize the fabrication cost of the cryogenic tank structure (both in

minimizing material scrap, and manufacturing time) the vertical welds (panel to panel) were

designed so that the requirement for a weld land would be eliminated. The outer skin material

would be procured in the required thickness, stiffener panels would be joined to the skin material,

and each stiffened segment would be fusion welded together to provide a leak free tank. Since a

weld land would not be available to reinforce the joint, a doubler would be placed over the shaved

root side of the weld, and attached by resistance spot welding. The doubler reinforced concept has

been successfully used on the Atlas and Centaur pressure stabilized configurations for years

(although with stainless steel rather than aluminum).

In order to fabricate the doubler reinforced weld joint, fusion weld parameters had to be

developed for both the 0.155" 2219-T81 aluminum and 0.155" 2090-T83 aluminum-lithium

materials, and the theory of the joint explored through mechanical testing of coupons. Variable

Polarity Plasma Arc (VPPA) fusion weld studies were initiated with the aforementioned material

systems using a 300 Amp Hobart VPPA welder. A helium purge box was adapted to the VPPA

welder so that all of the welding would be controlled under a shielded environment.

4.3.3.1 2219-T81 Aluminum Fusion Weld Development

The variable polarity plasma arc (VPPA) fusion weld development process was initiated

and weld certification panels were welded, radiographic inspected and sectioned into tensile test

and macro cross-section specimens. The preliminary results of tensile testing on 0.190" and

0.155" thick 2219-T81 aluminum sheet are shown in Table 99 and 100. Additional weld

development was performed with 0.155" 2219-T81 A1, results are shown in Figure I71.

As part of the VPPA fusion weld reinforcement study for support of the doubler reinforced

fusion weld panel fabrication, General Dynamics welded 2219-T81 aluminum plates (8.0 by 20.0

by 0.155 inches _ck) together to create uniaxial test specimens. The plates edges were machined

along the 8 inch length prior to VPPA fusion welding in order to assure a parallel weld surface that

was free from contaminants. Four sets of 8 by 20 inch panels were successfully fusion welded

and radiographically inspected. After inspection, the root side of the weld was shaved to provide a

smooth surface for subsequent resistance spot welding of the reinforcement doubler. Two

different specimen spot weld patterns were created to vary the spot weld spacing (refer to Figure

4-256
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172) and are referred to as the pattern 1 (even row) and pattern 2 (staggered row) pattern in further

discussions.

z _--

L--
w

Table 99. Tensile Strength of VPPA Fusion Welded 0.190" 2219-T81

Coupon
I.D.

1
2

3
4
5
6
7
8
9

Table 100.

Coupon
I.D.
A1

B1
C1

A2
B2
C2

A3
B3
C3

Width

(in,).......
0.962
0.960
0.966
0.936
0.921
0.949
0.930
0.946
0.986

Thickness

0.192
0.191
0.190
0.191
0.191
0.189
0.188
0.187
0.187

Area

(sq. in)
0.185
0.183
0.184
0.179
0.176
0.179
0.174
0.164
0.184

Load

0bs)
7565
7680
7522
7010
6909
7093
6867
6818
7082

Average

Ftu

(psi)
40,957
41,907
40,983
39,232
39,276
39,567
39,402
38,644
38,429

39,822

Tensile Strength of VPPA Fusion Welded 0.155" 2219-T81

Wid_

(in)
0.962
1.027
0.992

0.997
0.989
1.020

0.996
1.010

0.9665

Thickness

(in)
0.145
0.146
0.147

0.132
0.130
0.135

0.142
0.141
0.142

Area

(sq. in)
0.139
0.150
0.146

0.129
0.129
0.138

0.141
0.142
0.137

Load

(Ibs)
5850
6113

5953

Average

5031
4794
5163

Average

5310

5521

5244

Average

Ftu

(psi)
41,938
40,769
40,823
41.177

39,011
37,287
37,494

37.930

37,544

38,768

38,210

38,174

k.

F--

The fusion weld specimens were machined into a tensile coupon (dogbone) configuration

and chemically cleaned (doubler and outer skin material) prior to resistance spot welding of the

7475-T62 A1 doubler onto the 2219-T81 A1 fusion weld specimen. The completed uniaxial

specimens were strain gauged (refer to Figure 173) and tested at ambient temperature on a 50 Kips

MTS test machine; cross-head speed was 0.05 inches per minute. The strain gauge readings were

taken every 3 seconds. Table 101 lists the specimen type, the maximum load reached at failure, the

tensile stress at failure, and the percent of parent material strength (weld efficiency) indicated from

the coupons during the testing.
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Table 101. Tensile Response of Fusion Doubler Reinforce Testing for 2219-T81
AI with 7475-T62 AI Doubler.

_4

J [z:i

: =

!

:i L

=

iSpecimen Spot Weld Width Thickness Area Ultimate Load Ftu Weld Efficiency
ID Pattern (inch) (inch) (sq, in3 (pounds') (Ksi) (_rcent)

1-F4D 1 In-Line 4.84 0.155 0.750 36712 48.9 77.7
1-F3D2 In-Line 4.84 0.155 0.750 41151 54.9 87.0

2-F1D3 Staggered 4.02 0.155 0.620 34720 55.7 88.5

2-F2D4 Sta_ered 4.02 0.155 0.623 34727 55.7 88.5

All of the test specimens failed in the 2219-T81 skin along the first row of spot welds near

the edge of the doubler. There were not any indications of spot weld failure during testing, or

permanent deformation in the fusion weld. The first uniaxial specimen failed prematurely in the

skin. The premature failure was attributed to the high amount of heat used during resistance spot

welding of the initial panel (specimen 1-F4D1). The remaining test panels used lower heat settings

during attachment of the doubler. Weld efficiencies for the test specimens were lower than

predicted due to the close doubler inter-spot spacing (0.075 inch) used during welding. A

summary of the trends in the test data are presented as follows:

6)

1) At loads less than 15,000 lbs (20 ksi), all of the strain gage readings were essentially
linear.

2) At 15,000 Ibs., the doubler carried 24.9 percent of the load and the skin carried 75.1
percent. This ratio indicated that the spot stiffness (determined analytically) was
180,000 pounds/inch/spot.

3) Data obtained from strain gages 9 and 10 at loads above the 15,000 pounds were non-
linear, indicating the area near the fusion weld was fielding, or the sheet was bending
near the fusion weld. This effect caused the load ratio to change to 35 percent in the

doubler and 65 percent in the basic skin.
4) The analytical model indicated that for a spot stiffness of 180,000 poundsfmch/spot the

fusion weld would fail before the outer skin material; however, the yielding near the
fusion weld caused increased load transfer into the doubler protecting the fusion weld.

5) A 35 percent to 65 percent load split results in the effective spot stiffness of 986,000
pounds/inch/spot. The outer skin efficiency is now the weakest component of the
system due to the load split considering the minimum fusion weld strength is 36,000

psi.
The ultimate stress in the outer skin (2219-'I"81 sheet, Ftu = 63 ksi) was 48,936 psi at

the first row of spot welds that resulted in a weld efficiency of 77.7 percent.

The results of the doubler reinforced fusion weld testing showed that the in-line

configuration provided the best reinforcement of the fusion weld. However, neither reinforcement

joint configuration (in-line or staggered) were optimized. As a result of the tests and evaluations of

the joint at General Dynamics and Rockwell the inter-spot weld spacing was increased and the

center-line offset of the reinforce joint was readjusted.

w
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4.3.3.2 2090-T83 Aluminum-Lithium Fusion Weld Development

Parameter development on VPPA welding of the 0.155" 2090-T83 material was

performed. Radiographic inspection of the single pass welds revealed high quality fusion joints

with full penetration, however, the visual appearance of the welds showed small amounts of

undercut along the weld length. The initial goal of developing a single pass VPPA weld with full

penetration (Keyhole) without a 'cosmetic' cover pass to fill undercut was desirable since panel

distortion appeared to be most noticeable after the cover pass. However, the single pass weld

schedule could not be enhanced in order to remove the under-cut, and the program goal was

modified to include the cover-pass.

The preliminary test panel, 0.155" 2090-T83 A1-Li, was welded and radiographically

inspected. The panel passed the acceptance criteria for fusion welding of aluminum and was

processed for tensile and metallographic analysis. Data provided for the development work is

shown in Table 102. Tensile data was not consistent due to Varying amount of undercut on the

specimens.

Table 102. Fusion Weld Development of 0.155:2090-T83 AI-Li

1/8" Tungsten Electrode, 1/8" Orifice, Argon Gas
Current: 110 amps Shielding Gas Flow Rate: 80 CTH
Voltage: 15.5 volts Plasma Gas Flow Rate: 32 CFH

Straight Polarity Time: 44 msec Travel Speed: 9.5 in/min
Reverse Polarity Time: 7 msec Wire Feed Rate: 40 in/rain.

Additional Reverse Current: 80 amps
Coupon Test Area Load Ftu Elongation

I.D°

1
2

3

4
5

Average

(sq. in.)
0.141

0.144

(pounds)
5871

5269

0.141 5766

0.146 5313
0.145

0.143
5276

5499

(psi)
41,562

36,626

41,010

36,463

36,426

• ,38,417

5
4

5

5
5

m

i

l

II

m
w

II

m

m [

m

The two pass welding process (consisting of a keyhole pass, and a cover pass) resulted in

good weld strengths. However, distortion of the panels during welding required changes be made

to the fixturing during welding (the addition of chill b_ and an in_ in the number of fLxturing

clamps). The 2090-T83 material exhibited greater distortion than the 2219-T81 material.
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The VPPA two-pass weld was examined metallographically and by tensile evaluation. The

results from the evaluation axe shown in Table 103. The tensile specimens 1 through 3 were taken

from a section of the panel where mismatch was not present (average Ftu = 41.6 ksi), specimen 4

was located in a segment of the weld where mismatch was present (Ftu = 39.8 ksi). The

metallographic cross sections of the weld shown as Figure 174 (removed from the area without

mismatch) and 175 (removed from the area with mismatch). The photomicrographs revealed small

amounts of porosity, however, the quantity and size of the porosity was acceptable per General

Dynamics Space Systems fusion weld specification 5-77008-1. Weld parameter development was

continued in order to eliminate weld zone porosity.

Table 103. Tensile Results of

Coupon
I.D.#

1
2
3
4

Width

inch
0.954
1.009
1.005
1.015

Thickness
inch

0.156
0.157
0.156
0.156

0.155" 2090-T83 Two Pass VPPAW

Test Area
so. inch

0.149
0.158
0.157
0.158

Ftu
psi

4i169
41752

41759
39832

Elongation
%
5
5
4
5

Average 0.156 41128 5

4.3.3.3 Doubler-Reinforced Fusion Weld Development

The initial stress analysis of the LH2 tank longitudinal joint was developed such that both

the axial and the hoop loads were represented. The analysis of the loads in the joint was

accomplished with a stiffness model which represented the basic skin, the doubler, and the

stiffness of the spot weld attachment of the skin to the doubler. The nomenclature of the

longitudinal joint for an even row spot weld pattern and a ,LI.a.gggLC,d..L¢_ spot weld pattern is

shown in Figure 176 and Figure 1877. The analytical stiffness model of the joint is shown in

Figure 178. This model was analyzed by the matrix displacement method to find the internal

forces and displacements in the joint in terms of an applied displacement at node 6 with zero

displacements at nodes 1 and 2 (boundary conditions).

The initial analysis was performed on a reinforced fusion weld joint configuration (this

configuration was used for the tensile dogbone tests using 2219-T81 skin with 7475-T62 doubler)

for a range of values of spot weld stiffness. The analysis was done using a constant 9000 lb/in

load on the joint. The variables used in the analysis and the resulting computed internal loads are

listed in Table 104. This data was generated with the idea that the spot weld stiffness would be

found by comparing the failure load of the spot welds or the fusion weld with the curves.

However, the tensile dogbone test failures occurred in the basic skin at the first spot weld row;
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therefore,thespotweld stiffness was found by comparing the load distribution in the joint. The

load distribution, or how the load is shared between the doubler and the basic skin, is a function of

the spot weld stiffness. Table 105 shows the analytical data for a spot weld stiffness of 180,000

lb/in which best matched the tensile dogbone test data.

i

E

Gage

Figure 176.

_Edge Offset

_ Pitch
-I

C/L Offset

I

I

I

!

I

I

I

I

I

Skin Thickness
Doubler Thickness

Fusion Weld

Longitudinal Joint Configuration and Nomenclature for the Even Row Spot Weld
Pattern.
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-- Edge Offset

.,_.__ Pitch
C/L Offset

_t _t

_t _t

(

F-

Skin Thickness
Doubler Thickness

Fusion Weld

Figure 177. Longitudinal Joint Configuration and Nomenclature for the Staggered Row Spot
Weld Pattern.
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K1 is stiffness of doubler from C/L

to inside spot row.
K2 is stiffness of skin from C/L to

inside spot row.

K3 is stiffness of spot weld between
skin and doubler.

K4 is stiffness of spot weld in series

with doubler between spot rows.

K5 is stiffness of skin between spot
rows.

K6 is stiffness of some chosen length
of skin from outer spot row.

All stiffnesses based on one gage
width. _

I
K1

!
i<4

I K2

i

I

C/L Symrn

K5 K6

_ K1 _'J K4

K5 [_ K6 r_

Ki

Node Number

Element Stiffness Number

m

i

i

•,- ,=

ill
ii i

mm

Figure 178. Model Representation of a Fusion Weld / Resistance Spot-weld Doubler
Reinforced Joint
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Table 104. Analysis Results for Longitudinal Joint for Various Spot Weld
Stiffness Values.

(Staggered Row Pattern Above Shaded Row)
(Even Row Pattern Below Shaded Row)

GagB Pitch CL O_M_Edge Ol_r_ Skin Thick Doub_er Thick 1 or 2 DouSer Skin Modulus Dogb lulk:_JIus Spot K

{in) {in} {in1 lin) {in) (i,p} _rpsi} (psi} (Ib/in }
0.5 1 1.5 0.01 0.155 0.1 I 1.050E.07 1.000E*07 1._33 E,.-05
0.5 1 1 0.5 0.155 0.1 1 1.0506*07 1.0006+07 1,2336÷05

0.5 1 1.5 0.01 0.155 ' 0.1 1 1.0506+07 1,000t::+07 2.4666+05

0.5 1 1 0.5 0.155 0.1 1 1.0506÷07 1.000E÷07 2.466E_,05

0.5 1 1.5 0.01 0.155 0.1 1 1.0506+07 1,000E+07 4.9336,,05

0.5 1 1 0.5 0.155 0.1 1 1,0506_-07 1,0006+07 4.9336*05

0.5 1 I_ 0.0_ 9.15_ Q_ 1 a.050E,07 a.O_OE,,07 9,865E÷05
0.5 I 1 0.5 0.155 0.1 1 ,1-0_0_'07 1.000E÷07 9.865E+05
0.5 1 1.5 0.01 0,155 0.1 1 1.050E÷07 1,000E+07 1._73_÷06

(_ 1 1 Ip._, 0.155 0.I 1 1.0_0_+07 1,000E+07 1,973E_-06

0.5 1 1.5 0.01 0.155 0.1 I 1.050E_-07 1.000E*07 3.946E.06

0.5 1 1 0.5 0.155 0.1 I 1.050E,07 1.0006+07 3,9466+06

q;5 1 1.5 0.01 0.t55 9.1 I 1.9_;o_..07 1.000E.,,07 7.Sg2E÷O6

0.5 t 1 0.5 0.155 0.1 I 1 .(_)50 E407 1.0006+07 7,892E*-06

.:_:_:_:_;_:_:_;___:_:_:_:_:_:_:_:_:_:`:_:_;_:_:_;_;_:_:_;_;_:_;_:_:_;_:_:_:_:_:_:_:_:_:5.:_:_;_:_;_:;:_;_;_:_:_:_:_:_:_;_:_:_:_:_:_;_:_:`:_:_:_:_:_:_:_:_:_:_;_:`:_:_:_;_:_:_;_;_:_;_:_;_;_:_:_:_;_:_:_:_:_:_:_:_:_;_;_:_;_;_:_:_:_:_:_:_:_

001 01. 01 1 10 0 .071000 ÷071.3 .05i .75 1.7 _ '" 0,01 0.155 0.1 1 1.0506÷07 1.000[".07 2.4666÷05

0.7b 0.75 1.75 0.01 0.155 0.1 1 1.0506...07 1.0006*07 4.9336÷05

0.75 0.75 1.75 0.01 0.155 0.1 1 1.050E÷07 1.0006+07 9.865 E...05

0+75 0.75 I,75 0,01 0.155 0,'1 1 1+0506÷07 1.0006+07 _,9736÷06 '

0.75 0.75 1.75 0.01 0.155 0.1 I 1.050E÷07 1.0006_*07 3.946 E.,,06

(_.7_; 0.75 _75 0.01 _.1,_ I;).1 1 1.(_,_0_÷1_7 1 .(_01_,,07 7.892E÷06

F1 t:2 F3 F4 F5 F6 F. Weid Stress Load Dill 1 Load Dist 2

(11_) fib} rib 1 (Ib} ,_lb) (Ib) (psi} (F4/F6) (FI/F6}
19'_3, _'I_3, _:_I. _._. 34_4, 411_. 4bo3g. 0.1656 0.2461

_6_0. 3_1_1 7_7 r 4_01_. 4967. 50063. 0.1544 0.216619_7_
1256 r ..... 2841, 363. 8=3. 3204. 4097.
1419. 3542. 374. 1045. 3915. 4960.

1410. 2659. 331. 107_. 2990. 4070.

166'3, 3304. 362. 1301. 3666, 4967.

1486. 2558. 254. 1232. 2612. 4046.

1515, 2512 r .... 168. 1346. 2680. 4027.

1666r, 3120. 19=. ,1,667. 3319. 4686.

1_4, _493. 99. 14_5. _596_ 4017.

leg,o..__ 3101. 120. 1770. 3221. 4gg_.

36662. 0.2180 0.3065

45700. 0.2107 0.2880

34314. 0.2652 0,3465

42635. 0.2616 0.3348

33013. 0.3047 0.3674

40964. 0.3036 0.3622

32413. 0.3346 0.3762

40252. 0.3344 0.3743

32172. 0.3547 0.3793

40016. 0.3646 0.3767

1544. 2516. 55. 148=. 2571_ 4060. 32465. 0.3667 0.3802
19_'_ ......... _'134. 67. 1654. _01 _9§§' 404_" 9"3667 °'pc01

1415 r _1. 53=_ $77. 668g. 6766. 46026. 0.1296 0.20=2
1_66 r 4901 _ 6 0. _661. 6766, 42160. 0.1781 0.2756

2207. 4560. 6 4. 1 . 5244. 6767. 39224. 0.2250 0.3262

2415. 4354. 600. 1814. 4955. 676_. 37458. 0.2680 0.3567

2513. 424g. 448, 2066. 4696. 5762. 36546. 0.3055 0.3717

2552, ...... 4205. 290. 226_. 4495 T 6757. 36172. 0.3348 0.3777

2565. 4160. 169. _396. 4359. 6755. 36036. 0.3547 0.37=7

Note: The data above the shaded line for the staggered spot row pattern is given in pairs. One
gage width (.5 in) is for two spots which are closer to the edge; a companion gage
width (.5 in) is for two spots which are farther from the edge. These two lines of data

must be averaged to get the information for a 1 inch gage width.
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Table 105. The Analysis Best Matched the Test Data When a Spot Weld Stiffness
of 180,000 Ib/in was Used.

(3egl Pitch CLOffr_t EdgeOffl_ SkJ_ Thick Doul_er "l'hick 1 or 2 Doubler Skin Modulu= DoubModulus SpotK

Itn) 11.1 _I,',:, (l'l I1"1 I i'' ) (P'!) (P'4 IIb_i'l
I .,, 0.5 0.75 1.5 0.01 0.155 0.1 1 1.050E.*07 1.000E+07 1.800E.05

t 0.5 0.75 I 0.5 (_.i55 0.1 1 1.050E._07 1.000E÷07 1.800E÷0"

•...,. %. %. ,..o,•. ,o.,. ,.•.,.°. •, i.. ,o.,O o.o ,.,..., • ° _ ° • ..°.,., %,.°,•o%,.•.o,.,. %°,. °oO.°°. %.o. ° •.°0.°%,°° °.,, ..o, o •. .... .... o,.,.. °.. °°,o ........... o

F1 F2 F3 F4 F5 F6 F. We_S_e_ Load D_tl Load D_t2

(Ib} (Ib) (Ib) (Ib} (tb} (Ib} {psi) (F4/F6 ] IF1/F6}

[ 1111. 2949. 378. 733. 3328, 4060. 38053. 0.1805 0.2737

1241. 3781. _80. 852. 4171, 5023. 48793. 0_1696 0,2471........................ t .................................. ]_i ..........................................

1615. 5151. 651, 963, 5803. 6766. 44_14. _.14_4 0._86

Uniaxial tensile dogbone tests (refer to Figure 179) were performed on two doubler

rcinforc_ fusion welds configurations using the 7475 A1 joined to 2219 A1 material combination.

A total 0f ,4 specimens were tested; two specimens with even spot row patterns, Figure 180, and

two specimens with staggered spot row patterns, Figure 181. Figures 182 through 185 show the

s_ gage iocations for each of the four test specimens. The strain gage traces of rrdcrostrain vs.

specimen load for each of the four specimens are shown in Figures 186 through 190.

The joint load distribution found from test was matched with analysis runs to find which

value of spot weld stiffness yielded the same load distribution. A summary of the dogb0ne test

results with loads and load distributions in the joint are provided along with a comparison of the

analytical load dis_bution for a spot weld stiffness of 180,000 lbfm per spot in Table 106. The

first column showing "% Total Load" is the percent of the total load which has been passed into the

doubler by the f'u'st spot weld row. This would correspond to the percent of load in K4 in the

analytical model. The second column showing "% Total Load" is the percent of the total load

which h_ been passed into the doubler by both spot weld rows. This would correspond with the

load in K] in the analytical model.

The strain gage traces from the test specimens were analyzed to determine the loads in the

various parts of the joint at a given total load on the Specimen. The load point selected for

examinationof_e_strain _age data for each Specimen w_ approximately the maximum load at

which the strain data was still essentially linear. Once the strain data was determined to be

nonlinear, the load corresponding to that strain gage is unknown and the load distribution in the

joini is unknown. _is'io_ point referred to as the reference load was different for each different

specimen configuration. The reference load for F4D1 and F2D4 was approximately 15,000

4-270

m

i

|
m

i
II

m

I1|

Ii

||

[] i

m E



|

IL

. ..-,

tJ
J

r --
W

b

pounds; the reference load for FID3 was approximately 20,000 pounds and for F3D2 was

approximately 35,000 pounds. Figures 185 through 191 show the calculations of the loads in the

various parts of the joints determined from the strain gage readings at the reference loads. A

summary of these findings is given in Table 106.

Table 106. Summary of longitudinal joint dogbone tests comparing load
distribution in joint with analysis.

Speamen No. Type Reference Basic Sheet Doubler % Total Load Doubler % Total Load

Load Strain Gages Strain Gages 1 Strain Gages 2

(lb) (Ib} (Ib) (Ib)

F4D1 Even 15000. 1595 I. 2275. 14.3 3969. 24.9

F3D2 Even 35000. 34895. 7840. 22.0 12971. 37.0

ANALYSIS Even 14.2 23.9

F2D4 Staggered 15000. 15702. 2372. 15.1 4141. 26.4

F1 D3 Staggemd 20000. 19464. 5065. 26.0 7236. 37.0

ANALYS_S Staggered 17.5 26.0

Specimen No. Type Uldmate Load Bas_ Sheet Basic Sheet

Stress Result. Hoop Stress

(Ib} lib/in) (psi)

F4D1 Even 36712. 7585. 48936.

F3D2 Even 41151. 8502. 54853.

F2D4 Staggered 34727. 8638. 55732.

F1D3 Staggered 34720. 8637. 55721.

Fusion Weld Max Spot

Stress Shear Load

(psi) (ib)

Linear Linear

36751. 813.

34557. 1402.

41019. 652.
35104. 1123.

The 180,000 lb/in spot weld stiffness yielded analytical load distributions in the joint

(shown in Table 106) were very close for two of the test specimens, namely, F4D1 and F2D4. An

analytical match with specimens F3D2 and F1D3 could only be achieved ff the spot weld stiffness

was infinite. In this case the load in the doubler at the center would be about 37% of the total load.

With this being the case the data for F4D 1 and F2D4 it was concluded that the 180,000 lb/m for the

spot weld stiffness was the correct value. It was also found that if the gage used in the analysis

were reduced by 0.25 inches the analytical results would more closely match test results. This was

attributed to the fact that the spot weld areas occupy some of the gage length and thereby reduces

the gage effective length below the centerline-to-centerline distance between spot welds.

An assumption from the test data, which was not observed during the testing in any way,

was that the fusion welds may have been close to failure when the specimens failed. If the linear

distribution of the loads were applied to the joint at specimen failure; i.e., 24.9% of the ultimate

load for the even row specimen and 26.4% of the ultimate load for the staggered row specimen,

L:
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then the fusion weld would be close to the average fusion weld ultimate stressas found by

experiment atGeneral Dynamics shown inTable 107. However, itisbelievedthatlocalyieldingin

the vicinityof the fusionweld actedto limitthe fusionweld stressand thereforeoffersome dcgrcc

of protectionfor thejoint. Additionally,itis sccn thatthe spot weld loads are quite modest as

compared tothe allowableloadslistedinTable 107.

L

7

Since allspecimens failedin the basic skin atthe firstspot weld row and since the spot

weld loads are quitemodest thcn itwould suggest thatthe jointstrengthcould bc improved by a

process of optimizing the parameters of thejoint configuration.For instance,possibly the spot

weld spacingcould be increasedtoimprove the basicsheetefficiencybut yetnot overload the spot

welds. However, thisdecrease inthe number of spotwelds would increasethe load atthe fusion

weld. For this mason the sensitivity curves of Figure 192 through 194 were generated to show the

fusion weld stress and the spot weld shear load as a function of the doubler thickness, spot weld

gage (spacing), and of the doubler width. These curves were only generated for the even spot row

configuration since it was seen that the staggered row configuration had the disadvantage of

showing higher fusion weld stresses with no real advantage except lower spot weld shear loads.

The curves in Figures 192 through 194 were generated for a constant joint load of 7585 lb/in.

4.4 PANEL FABRICATION AND TEST
4.4.1 FABRICATION AND TESTING OF CRIPPLING PANELS

4.4.1.1 Crippling Panel Fabrication

The crippling panel designs were based upon the analysis of the three selected stiffener

configurations. The designs were analyzed and optimized for fabrication and structural testing.

The crippling specimens were superplastic formed, heat treated, trimmed, inspected, spot welded

to outer skin material and assembled into the test fixtures. Testing was preformed on the three

configurationsand compared withpredictedbehavior of the stiffenedstructures.

4.4.1.1.2 Crippling Panel Tool Desi_ and Fabrication

= -

i

The SPF tooling was fabricated as a die box with three inserts that were indexed into the

bottom of the tool. This type of configuration (die box with inserts) provides for a least cost

tooling approach, and maximizes the types of configurations that can be fabricated with the

universal tool. The die box and inserts were fabricated from mild steel (1020 steel) shown in

Figure 195 and 196. The crippling panel SPF tooling was installed into the automated 300 ton

press and evaluated for thermal stability (refer to Figure 197 and 198) and insulation requirements

that would be utilized during the forming process. Pressure versus time prof'des were run for the
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three stiffener configurations for all of the materials used during the program (7475 AI, 2090 AI-

Li, 8090 AI-Li, and x2095 A]-Li) refer to Figures 199 through 202

I

Table 107. Spot Weld and VPPA Fusion Weld Strength Values for Various

MatorisJ Comt)ir_t_on

IDoubler/Base Sheet)

0,100" 7475-T62/.155" 2219-T61

0.090"20g0-T62/0.t 55" 2090-T8

0.100" 7475-T6/0.190" 2219-T8

0.090" 2090-T62/0.190" 2090-T83

Reference

Te_o

R.T,

R.T,

RT.
LN2

LH2

RT.

LN2
LH2

Soot L_.D Sh_r V_Iues _]bl) ,

Avnc;o ,,A" Allowable "B" Allowable

2616 (6) 148o (6)

0.072" 2090T-62/0.190" 2090-T83 R.T. 2175 (2) 1570 (2)

0.077" 7475-T6/0.1901 2219-T8 FLT. 2gog (1) 2402 (1)

lg41 (6)

,,s_e! [_oo_,
Averacp "A', Allowuble

62.03 (7) 56.36 (7)

68.4 (8)

62.13 (3) 58.73 (3)
74.74 (3) 69.80 (3)

82.82 (3) 67.49 (3)

65.89 (4) 59.2 (4)

76.13 (4) 60.43 (4)
87.68 (4) 72.83 (4)

"13"Allowa b,[o

sa.6e (7)

60.11 (3)
71.82 (3)

73.72 (3)

61.92 (4)

68.81 (4)
78.87 (4)

(1) Fourtaenth Monthty Report, Table 1

(2) Fourteenth Monthly Report, Tsble 2
(3) gxlaen_ Monb_ly Report. Table 1
(4) Sixleen_ Mon_ty ReporL Table 2

(5) Eighteen_ Monthly Report. I_G_e 7
(6) Eighteenth Monthly Report, p41.ge8
(7) Eightaen_ MontNy Report, Table 5

(8) Eighteenth MontHy Report, Tsb4e 6

MateriaJ Combina_on IReference VpPAW,F:_ion Weld S_'O_o_ (krJ}
_Doubler/Base S.heet) ..... iT.emp:. Average "A" Allowable ['13" Allowable

_.100" 7475-T62/.155" 221g-T81

3.0g0"2090-T62/0.155" 2090-T8

:).I00" 7475-T610.190" 2219-T8

0.090" 2090-T62/0.190" 2090-T83

0.072" 2090%62/0.190" 2090-T83

0.077" 7475-T6/0.190" 2219-T8

R.T.

R.T.

RT.
LN2
LH2

R.T.
LN2

LH2

FLT.

FLT.

37.93 (5) 28.00 (5) 32.14 (5)

Joints.
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2219 Long Joint Fusion Weld Stress vs. Doubler Thickness

I
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" ¢11

i

Spot Shear Load
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2219 Long Joint Spot Shear Load vs. Doubler Thickness
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I
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'B" Strengtl = 941.

1 = 480.
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w

Figure 192. Sensitivities of The Fusion Weld Stress and Spot Shear Load to a Variation in
Doubler Thickness.
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Fusion Weld

Stress (psi)

Spot Shear Load

(Ib)

39200

39000

38800
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38000
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37400

37200
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1000

98O

960
940

920
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2219 Long Joint Fusion Weld Stress vs. Spot Weld Gage
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Spot Weld Gage (Spacing) (in)

?930. psu
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2219 Long Joint Spot Shear Load vs. Spot Weld Gage
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m
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,t,,_ ''_ Aver_ )e Strenc th i 2616 Ib j
-B"S_reo_ 1941

] "•A"s :ren_ 1'_o
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Figure 193.

L ¸' :

Sensitivities of The Fusion Weld Stress and Spot Shear Load to a Variation in Spot
Weld Gage.
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Sensitivities of The Fusion Weld Stress and Spot Shear Load to a Variation in
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Figure 197. Graphical Representation of the Crippling Tool Thermal Survey.
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Figure 198. Schematic of Crippling Tool and Platen Thermocouple Layout and Temperature Print
Out from Heat Survey.
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Figure 199. Crippling Panel Pressure Versus Time Profile for 7475 A1.
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Figure 200. Crippling Panel Pressure Versus Time Profile for 2090 A1-Li.
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Figure 201. Crippling Panel Pressure Versus Time Profile for 8090 A1-Li.
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Figure 202. Crippling Panel Pressure Versus Time Profile for 2095 A1-Li.
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The part blanks of each material were coated with releasing agent (either sprayed or painted

on as shown in Figure 203), hot loaded into the SPF press (refer to Figure 204), formed, hot

unloaded (refer to Figure 205) and allowed to slow air cool (refer to Figure 206). The panels were

formed, heat treated, trimmed to a net shape configuration (refer to Figures 207 and 208) and

inspected (both for surface flaws and for presence of cavitation (initial proof of run part only))

prior to shipment to General Dynamics Space Systems Division for joining and final assembly.

Thickness measurements _were evaluated for ail'_ee panel confgurafions to assess the predicted

versus actual thinning and to map the thinning in the flange area prior to welding. Additional

specimens were shipped as dummy specimens for display and verification of the welding

procedure.

4.4.i.2 Crippling Panel Test Plan
4,4.1.2.1 Introduction

Three hat stiffener concepts with various material combinations have been designed by

Rockwell in conjunction with NASA Langley and General Dynamics to utilize the SPF process in-

combination with resistance spot welding or an alternate joining concept. The purpose of these

concepts is to reduce the manufacturing cost of large cryogenic LH 2 tank designs associated with

ALS or future hypersonic vehicles

The objective of this test plan is to delineate the type of loading fixture, instrumentation,

failure load predictions, and test procedure that are required to evaluate these stiffener concepts

under uniaxial compression for local buckling, crippling and joint effectiveness (referring to the

spot weld application or adhesive system).

4.4.1.2.2 Specimen Description

Each specimen consists of a 16.75" x _6" x 0.i90" plate skin which is spot-welded at

intervals to the inner flanges of a partie_ar 2ii high stiffener Configuration as shown in Figure 209.

The hat stiffener designs were selected to increase structural efficiency and utilize the SPF process

are as follows:

A) Stepped hat with curved outer cap

B) Beaded web hat with curved outer cap

C) Beaded web hat with flat outer cap
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L Each configuration has four (4) stiffener replicates utilizing the following material combinations for

a total of twenty four (24) specimens.

Stiffener Skin

7475 A1 2219 A1

2090 A1-Li 2090 A1-Li

The ends of each stiffener are potted with epoxy to provide local support to the compression edges

The structural test laboratories at NASA Langley will test six test specimens (one of each

configuration and material type), while General Dynamics will test eighteen of the test specimens

(three of each configuration and material type) at its strucawal test laboratory (Reference Specimen

Da-awing L9111392 shown as Figure 209).

4.4.1,2,_ Test Temperature

_L

Ambient test conditions will be utilized for all specimens. Test temperature should be

recorded prior to initiation of the structural test for inclusion of data in the test report.

4.4.1.2.4 Test Machine

A compression test machine of 120,000 lb or greater capacity capable of a loading rate of

0.05 in/minute should be utilized for the crippling panel tests.

4.4.1.2.5 Instrumentation

Both strain gages and deflectometers will be utilized for instrumentation. The approximate

locations of these gages are shown for the stepped hat in Figure 210 and for the beaded web

configuration in Figure 211 (Reference drawing L9111398 shown as Figure 212).

4.4.1.2,_; Test Fixtures

The test fixture supports the loaded edges of each specimen to prevent local crippling and

to provide simple support boundary conditions to the stiffener side edges. The support of the

loaded edges consists of surrounding each edge with a 2" depth potting compound as shown in

Figure 213. The side edge support design are shown also in Figure 213. These are simple

"clamp-ons" with teflon tape between the specimen and attachment which is based upon past test

experience at Rockwell which effectively provides simple support conditions (Reference drawing

L9111397 shown as Figure 214).
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Figure 210. Strain Gauge Locations View 1.
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L9111397 Test Fixture; Type 1 Test Panel

(End and Edge Resn'aints for Short Column Compression)

i

Figure 213. Test Support Fixture.
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4.4.1.2.7 Test Procedure

Each specimen will be mounted and aligned in the test machine for compression loading as

shown in Figure 213. The loading of the test specimens was along the center of gravity for each

stiffener which was calculated as a 0.47 inch offset for the stepped hat stiffeners, and a 0.18 inch

for the beaded web hat stiffeners with respect to the outer mold-line of the stiffener skin. As in

standard practice all gages will be zeroed out, and the reading of all gages recorded prior to the start

of the loading cycle. Each stiffener will be loaded continuously, with su'ain gage readings taken at

10 second intervals until failure. The predicted ultimate loads for each stiffener type, and the

identification of critical stiffener areas (refer to Figure 215) are summarized in Table 108.

! L!

m L- j

=J E

' !

!

I I

£

Figure 215. Critical Failure Areas for Stiffener Concepts as Determined by PASCO Modeling.
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TABLE 108. Predicted Ultimate Uniaxial Loads.

Stiffener Type

Stepped Hat
With Curved

Cap

Stepped Hat
With Curved

Cap

Beaded Web
Fiat or Curved

Cap*

Beaded Web
Fiat or Curved

Cap*

Skin

2219 AI

Material Combinations

I Stiffener

7475 SPF AI

2090 AI-Li

2219 A1

2090 A1-Li

2090 SPF A1-Li

7475 SPF AI

2090 SPF A1-Li

.256

.252

.264

.252

Urdaxial Load

76,800 Lb.
69,000 Lb.

68,000 Lb.

60,000 Lb.
79,200 Lb.

60,000 Lb.
68,000 Lb.

Critical
Areas

Crippling
Yield Skin

Comp
Yield Hat

Comp. Yield
Skin

Skin Wrinkle

Comp. Yield
Hat

Based upon PASCO analysis, the difference in the Ultimate loads for the flat or curved cap
configurations was insignificant, thus both configurations are shown together in the table.

Note: (I) Thinning pmf'fles used during the analysis were developed by C. Anton.
(2) Critical Design areas are shown in Figure 4.
(3) Critical Design Loading utilized for the analysis included:

Nx = -7607 lb./in

Ny = +7002 lb./in
Nxy = -119 lb./in

4.4.1.2.8 Data Require_

All strain gage, load increment,and deflectometer readings for each stiffener test will be

recorded. In addition, any observations about the test specimens as they are loaded will be noted

and recorded.

One 8-1/2 x 11" glossy and one 85 line screen print with negative will be taken of each

stiffener mounted in the test machine. One 8-1/2 x 11" glossy and one 85 line screen print with

negative will be taken of each stiffener after failure. A schematic drawing showing the actual

measured locations and orientations of all strain gages and deflectometers shall be furnished to the

program manager.
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4,4.1.2.8 Test Re_tmrt

A test report summarizing all specimen tests from each testing group will be jointly

developed by Rockwell and General Dynamics and submitted withe 30 days after test completion

of crippling panels for evaluation.:

The test fixture was evaluated with a beaded laatstiffened panel taken up to the point of buckling of

the stiffener and skin (67,700 Lbs). The test set-up performed as expected

4.4.1.3 Assembly of the Crippling Test Panels

Upon receipt at General Dynamics, the stiffener and skin combination was cleaned, re-

identified as structural test specimens, and internal strain gauges were applied prior to welding

(refer to Figure 2i6). The stiffener and S_n panei_combination wasplii_edinto a spot weld

spacing jig (as shown in Figure 217) and welded (refer to Figure 218 through 220) per the weld

schedule developed during task 3.

The 7475-T62 to 2219-T81 A1 panels were successfully welded, examined for weld

integrity by radiographic analysis and prepared for structural testing (refer to Figures 221 and

222). Weldnugget diameter and lap shear strengths were measured (initially after every panel, but

later on the weld certification coupons were tested after each hour of welding) and the results are

shown on Table 109 and Figures 223 through 226.

The welded panels were trimmed, assembled into the test fixture, and tested. The initial

fully straingauged crippling panel test was pe_-rrn_on the stel_ped _at_configuration (refer to

Figures 227 through 229). Buckling initiated at 77,000 lbs for the stepped hat stiffener but

continued to carry load up to 84,000 Lb. The spot welds did not fail during the testing for either

the test set-up panel or the initial stepped hat panel.

The results of the 7475-T62/2219-T81 aluminum panels structurally tested at General

Dynamics are summarized in Table 110. All testing was performed per the crippling test plan at

ambient temperature and the panels were continuously loaded until failure. Side attachments

provided support to simulate simple support edge condition. Twenty nine strain gauges and three

deflectometers were installed for each panel.
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Figure 216. 7475-T62 SPF Stepped Hat Stiffener and 2219-T81 Skin with Strain Gages.

!

Figure 217. SPF Stepped Hat Stiffener and Skin Clamped With Resistance Spot Spacing Tooling.
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Figure 218. Resistance Spot Welding Crippling Test Panel Stiffener to Skin.

BLACK AND V,'HiTE PHOTOCreAPlq

4-313



U

Figure 219. SPF Stepped Hat and Stiffener Being Resistance Spot Welded.

Figure 220. End View of Welded Stepped Hat and Skin Combination.
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Table

Coupon I.D.

(% Heat)
Panel 1, 65-3-7-2

Pre-Test(33.5)
Pie-Test(35)
Pie-Test (35)
Pre-Test (35)
Pre-Test (35)
PreTest (35)

Panel 1, 65-3-7-2
Post-Test (33.5)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Avcxage

Panel 2, 47-3-7-23
Post-Test (33.5)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)

Average

Panel 3, 50-3-7-26
Post-Test (33.5)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)

Average

Panel 4, 43-3-7-3
Post-Test (33.5) i
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-Test (35)
Post-TeR (35)
Average

109.

Nugget

(inch)

0.314
0.339
0.336

0.352
0.334
0.343

0.330

0.341
0.345
0.335

0.340

0.339
0.342
0.360

0.347

0.372
0.350
0.346

0.356

Crippling Panel Weld Certification Testing.

Nugget Penetration
Upper Sheet Lower Sheet

(inch)

0.034- 0.042
0.042- 0.043
0.036- 0.040

0.034-0.038
0.027- 0.038
0.035-0.O44

0.035

0.034 - 0.036
0.032

0.033 - 0.036

0.033

0.041
0.041
0.042

0.035

0.041-0.043
0.037
0.035

[ finch)

0.018 - 0.041
0.020 - 0.079
0.018 - 0.084

0.016 - 0.060
0.020 - 0.070
0.018 - 0.063

0.018

0.020 - 0.060
0.017 - 0.064
0.017 - 0.070

0.018

0.022 - 0.065
0.016 - 0.062
0.020 - 0.068

0.020

0.021-0.070
0.021- 0.069
0.022- 0.080

0.0200.035

Shear
Surength

fl..bs)

1950
2546
2551

2345
2107
2322
2304

2936
2140
2898
2658

2522
3026
2389
2646

2049
2874
2577
25O0

Material
Thickness
_chL_

0.073
0.073
0.073
0.075
0.072
0.071

0.076
0.077
0.078
0.077
0.073
0.072
0.074

0.071
0.071
0.071
0.078
0.073
0.073
0.073

0.074
0.074
0.075
0.077
0.073
0.075
0.075

0.076
0.076
0.076
0.074
0.071
0.0gl
0.076
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Table

Coupon I.D.

,,, (% HeaO
Panel 5, 1-1-7-7

Post-Test (35)
Post-Test (36)
Post-Test (36)
Post-Test (36)
Post-Test (36)
Post-Test (36_

Avemge

Panel 8,7-1-7-20
Post-Test (35)
Post-Test (36)
Post-Test (36)
Post- Teat (36)
Post-Test (36)
Post-Test (36_

Average

Panel 11, 27-2-7-63 _
Post-Test (35)
Post-Test (36)
Post-Test (36)
Post-Test (36)
Post-Test (36)
Post-Test (36_

Average

Panel 12, 30-2-7-36
Post-Test (35)
Post-Test 06)
Post-Test 06)
Post-Test (36)
Post-Test (36)
Post-Test (36)
Average

Average of All
Panels Welded

109 (Cont.).

Nugget

ripch_

0.343
0.335
0.340

0.339

0.335
0.332
0.348

CHppling Panel Weld Certification Testing.

Nugget Penetration
Upper Sheet Lower Sheet

finch_ I , finch_

0.016 - 0.059
0.016 - 0.06O
0.024 - 0.070

0.041 0.018

0.02O - 0.055
0.018 - 0.048
0.018 - 0.066

0.038 - 0.O4O
0.040
0.044

0.338

0.344
0.318
0.334

0.332

0.347
0.319
0.326

0.331

0.339

0.030 - 0.038
0.030 - 0.036
0.031 - 0.043

0.030

0.034
0.040
0.044

0.039

0.031
0.039
0.037

0.036

0.019

0.016 - 0.049
0.018 - 0.054
0.016 - 0.062

0.017

0.014 - 0.050
0.018 - 0.049
0.019 - 0.055

0.017

0.0180.036

Shear
Suv.ngth

fLbs_

2304
2644
2908
2814

2304
255O
2120
2325

2304
255O
2120
2325

2339
2245
2126
2237

2476

Maumal
Thickness

finch3

0.077
0.077
0.078
0.082
0.079
o.o79
0.079

0.074
0.073
0.072
0.081
0.081
0.080
0.077

0.078
0.078
0.078
0.078
0.078
0.080
0.078

0.074
0.077
0.079
0.079
0.073
0.083
0.077

0.076
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Figure 222. Radiographic Image of Resistance Spot Welds for Test Panel 1.
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Figure 223. Panel 5 Pre-test Spot Weld Nuggets 0.070" 7475-T62 joined to 0.190" 2219-T81 A1.
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Figure 224. Panel 8 Pre-test Spot Weld Nuggets 0.070" 7475-T62 joined to 0.190" 2219-T81 A1.
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Figure 225. Panel 11 Pre-test Spot Weld Nuggets 0.070" 7475-T62 joined to 0.190" 2219-T81
A1.
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Figure 226. Panel 12 Pre-test Spot Weld Nuggets 0.070" 7475-T62 joined to 0.190" 2219-T81
A1.
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Figure 227. Front View of Initial Test Panel at Completion of Testing at General Dynamics.
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Figure228. SideView of Initial TestPanelatCompletionof Testingat GeneralDynamicswith
Defiectometers.

4-324

m

R

m

[]

z
g

m
!

|

m
m

!

J

|
m
m

II

|
u

II

_m
ii

!

D

[]
II

il

u
m
B

m

lira



L

" z__

Figure 229. Back View of Initial Test Panel at Completion of Testing at General Dynamics.
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Table 110. Crippling Panel Test Results for
T81 Skin.

7475-T62 StVffener Joined to 2219-

Panel and I.D,

Test Panel 1 (47-3-7-23)
Test Panel 2 (50-3-7-26)
Test Panel 3 (43-3-7-3)
Test Panel 4 (1-1-7-7)
Test Panel 5 (3-1-7-16)
Test Panel 6 (7-1-7-20)
Test Panel 7 (26-2-7-62)

Test Panel 8 (27-2-7-63)

Test Panel 9 (30-2-7-36)

Panel Type

Stepped Hat
Stepped Hat
Stepped Hat

Beaded Web (CC)
Beaded Web (CC)
Beaded Web (CC)
Beaded Web (FC)

Beaded Web (FC)

Beaded Web (FC)

Ultimate Load

(Lbs)

-84,000
-79,400
-83,400
-66,500
-67,900
-66,300
-63,000

-67,500

-67,00O

Comments

Cracked Spot Welds 1, 2, 14
Cracked Spot Weld 2

Cracked Spot Weld 19
Popped Spot Welds 8, 9, 10,
14, 15, 16
Popped Spot Welds 19, 20, 21
Cracked Spot Welds 2, 3, 13
Cracked Spot Welds 1, 2

The test load values were for the 7475-T62 to 2219-T81 aluminum stiffener and skin

combination were slightly higher than the predicted load values. The higher results have been

attributed to conservative estimates for spot weld strength which translated into reductions in outer

skin and stiffener allowables. The predicted ultimate uniaxial test loads for crippling in the hats are

re-iterated (reference Table 108) for comparison purposes in the following table:

Predicted Ultimate Uniaxial Test Panel Loads
Aluminum

im

m

II

i

J

m

i

J

g

m
W

-..-

The panel predicted ultimate loads were to fail the stiffener prior to failure of the skin, or

simultaneous buckling of the stiffener and the skin material. -

............... 7 ..... "

The 2090-T62 to 2090-T83 A1-Li panels were successfully welded, examined for weld

integrity by radiographic analysis and prepared for structural testing. Weld nugget diameter and

lap shear strengths were measured (initially after every panel, but later on the weld certification

coupons were tested aftercach hour of we!_ng) and the results are shown on Tables 111 and 112.

Stiffen_gurations were formed, heat treated, trimmed and ins_ted prior tO shipment

to General Dynamics for joining of the stiffener to Outer pressure vesseI skin. Upon receipt at

General Dynamics, the stiffener and skin combination was cleaned, re-identified and internal swain
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gauges were applied prior to welding. The stiffener and skin panel combination was placed into

the spot weld spacing jig and welded per the developed weld schedule for the material

combination. The welded panels were trimmed, loaded into the test fixture and structurally tested.

The structural crippling test results are summarized in Table 113. All testing was

......... performed per the crippling test plan at ambient temperature and the panels were continuously

loaded until failure. Side attachments provided support to simulate simple support edge condition.

Twenty nine strain gauges and three deflectometers were installed for each panel.

w

m

w

_7

The ultimate test load values for the 2090-T62 to 2090-'1"83 aluminum-lithium stiffener and

skin combination were slightly higher than the predicted load values. The higher test results have

been attributed to conservative predictions for spot weld strength which resulted in higher knock-

downs to outer skin and stiffener allowables. The predicted panel failure modes were crippling of

the stiffener prior to the skin, or simultaneous buckling of the stiffener and the skin material.

Table 111. 2090 AI-Li Crippling Panel Weld Certification Testing.

CouponI.D.

Panel 14, 17-3-2-15

Panel 15,126-3-2-91

Panel 16, 60-3-2-42

Panel 18, 35-2-2-51

Panel 19, 39-2-2-55

Panel 20, 70-2-2-58

Panel 21, 12-1-2-10

Panel 23, 87-1-2-77

Panel 24, 91-1-2-82

Average of All
Panels Welded

Nugget
Diam.
(inch)

0.361

0.382

0.360

0.328

0.346

0.361

0.363

0.369

0.369

0.361

Nugget Penetration
Upper Sheet Lower Sheet

finch) I finch)

0.032

0.018

0.018

0.023

0.018

0.037

0.030

0.026

0.O26

0.027

0.022 - 0.060

0.017 - 0.085

0.017 - 0.085

0.019 - 0.073

0.021 - 0.083

0.022 - 0.082

0.020 - 0.082

0.019 - 0.082

0.019 - 0.082

0.019 - 0.078

Shear

Strength
(Lbs)

2717

2341

2299

2638

3123

2067

232O

2758

2758

543

Material

Thickness

finch)

0.069

0.063

0.062

0.068

0.062

0.063

0.065

0.065

0.065

0.065
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Table 112. 2090 AI-Li Crippling Panel Weld Certification Testing.

Coupon I.D.

Panel 13, 56-3-2-35

Nugget
Diam
(inch)

Average

Panel 14, 17-3-2-15

Ave_dge

Panel 15,126-3-2-91

Average

0.403
0.4O8
0.380

0.361
0.340
0.331

0.371

0.373
0.365
0.355

0.366
0.353
0.354

0.361

0.367

0.384

0.395

0.382

Nugget Penewation
Upper Sheet

(inch)

0.032

0.029

0.038

0.020
0.021

0.021

0.027

0.031
0.041
0.038

0.028

0.029 -0.033

0.024 -0.029

0.032

0.022

0.016

0.017

0.018

Lower Sheet
[ (inch)

0.020 - 0.056

0.019 - 0.062

0.021 - 0.049

0.016 - 0.075

0.016 - 0.048
0.016 - 0.048

0.018 -0.056

0.022 -0.061

0.024 -0.051

0.033 -0.057

0.020 - 0.061

0.015 - 0.062

0.015 - 0.069

0.022 - 0.060

0.016 -0.075

0.020 -0.I00

0.016 - 0.081

0.017 - 0.085

Shear

Strength
O_,bs_

2938
2779
2974

2674

2164

255O

2680

2682
3208
3127

2541
2240
2504

2717

2346
2225
2451
2341

Material
Thickness

(i_¢h)

0.064
0.064
0.064
0.061
0.059
0.62

0.059
0.059
0.059

0.0666
0.064
0.061
0.062

0.066

0.067

0.069

0.075
0.066
0.071

0.069

0.060
0.060
0.060
0.066
0.C68

• 0.063
0.063
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Table 112 (Continued). 2090 AI-Li Crippling Panel Weld Certification Testing.

Coupon I.D.

(% Heat)

Panel 16,60-3-2-42

Nugget

(inch)

Average

Panel 17,34-2-2-50

Average

Panel 18, 35-2-2-51

Average

Panel 19, 39-2-2-55

Average

0.367
0.384

0.395

0.361
0.350

0.305

0.360

0.360
0.360

0.366

0.362

0.339

0.309

0.337

0.328

0.360

0.321

0.358

0.346

Nugget Penetration
Upper Sheet

finch)

0.022
0.016
0.017

0.019
0.017

0.018

0.018

0.033
0.036

0.028 0 0.031

0.033

0.021

0.030

0.018

0.023

0.015 - 0.022

0.017

0.013 - 0.020

0,018

Lower Sheet
[ finch)

0.016 - 0.075
0.020 - 0.I00

0.016 - 0.081

0.018 - 0.070

0.019 - 0.074

0.026 - 0.079

0.017 - 0.085

0.017 - 0.070
0.024 - 0.071
0.017 - 0.079

0.019 - 0.073

0.015 - 0.055

0.017 - 0.037

0.017 - 0.051

0.019 - 0.073

0.023 - 0.087

0.013 - 0.077

0.028 - 0.086

0.021 -0.083

Shear

Strength
fLbs)

2346
2225
_51

2018

2159
2592

2299

2242

2600

2653
2498

2648
2631
2635
2638

3115

3094

3161
3123

Material

Thickness
finch}___

0.060

0.060
0.060

0.066

0.068

0.063

0.060

0.060

0.060

0.060

0.061
0.062

0.062

0.062
0.072

0.070

0.068

0.065

0.069

0,069
0.068

0.057

0.055

0.053

0.069

0.064

o.o71
0.062
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Table 112 (Continued). 2090 AI-Li Crippling Panel Weld Certification Testing.

Coupon I.D.

(% Heat_
Panel 20, 70-2-2-58

Average

Panel 21, 12-1-2-10

Average

Panel 23, 87-1-2-77

Average

Average of All
Panels Welded

Nugget

(inch')
=.,

0.352
0.368
0.363

0.361

0.380
0.360
0.354

0.363

0.380
0.366
0.375

0.369

0.361

Nugget Penetration
Upper Sheet

finch)

0.035
0.042
0.035

0.037

0.023
0.025
0.022

0.030

0.026
0.032
0.027

0.026

0.027

I._werSheet
I finch)

0.021 - 0.081
0.023- 0.088
0.021 - 0.O76

0.022- 0.082

0.013- 0.084
0.025-0.074
0.019- 0.088

o.o2o- 0.082

0.017 -0.088
0.022-0.088
0.017 -0.088

0.019 -0.082

0.019 - 0.078

Table 113.

Shear
Strength

(Lbs)

1882
2126
2194
2O67

2699
2516
2501
2320

3011
2796
3024
2758

543

Material
Thickness
finch)

0.060
0.060
0.060
0.070
0.065
0.064
0.063

0.062
0.062
0.062
0.069
0.069
0.071
0.065

0.062
0.061
0.062
0.066
0.068
0.069
0.065

0.065

Crippling Panel Test Results for 2090-T62 Stiffener Joined to 2090-
T83 Skin,

Test Panel

14
15
16
18
19
20
21
23
24

I.D. Panel Type

(17-3-2-15)
(126-3-2-91)
(60-3-2-42)
(35-2-2-51)
(39-2-2-55)
(70-2-2-58)
(12-I-2-10)
(87-1-2-78)
(91-1-2-82)

Stepped Hat
Stepped Hat
Stepped Hat

Beaded Web (FC)
Beaded Web ('FC)
Beaded Web (FC)
Beaded Web (CC)
Beaded Web (CC)
Beaded Web (CC)

Ultimate Compressive Load
fLbs)

70,300
74,600
73,800
65,000
65,000
65,200
65,800
67,200
63,770
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4.4.1.4CripplingPanel Test Evaluation

The test plan for the crippling stiffener panels consisted of applying a compression loading

continuously to the _tt_ ends of each panel _u_ the_nter of gravity of each skin/stiffener

combination with the side edges simply supported until failure. Strain gage readings were

continuously recortied to failure of-the panel. In addition, the test machine head travel and

transverse deflection at several locations on each stiffener were recorded. The detailed test plan

was described in Rockwell TFD-90-118210 (refer to section 4.4.1.3).

General Dynamics tested eighteen of the crippling panels and the test results are given in

Table 1 I0. The NASA-Langley test results were not available for inclusion in this report. The

General Dynamics test results arc the basis of the Rockwell test evaluations.

A summary of the testinitialbuckling and ultimate loads (as derived from General

Dynamics testreport)versus the predictedloads from the PASCO program are shown in Table

I14. The basic failuremode for each stiffenerwas face wrinkling of the skin,as would be

expected with a heavy skin-lightstiffenercombination. Itwas noted thatvery soon afterthe skin

wrinkling for the stepped hat,theweb buckled because of the change in skinsupport condition.

This can also be seen in the PASCO analysis for the critical failure eigenvalue. After ultimate load,

'_me inter-spotweld crippling failure was observed. The failure of a typical stepped hat is shown

in Figures 230 and 231. Plots of the strain gage readings for the back-to-back skin gages and hat

gages for a typical stepped hat are shown in Figures 232 through 234. Strain gage locations are

shown in Figure 235. Some of the gages showed divergence typical of a stability-type failure;

however, a few of the back-to-back gages (Figure 232) indicated that both sides of the skin were in

tension. It was assumed this means that the buckling wave in the skin is going outward away from

the stiffener (creating an I-beam effect) that overpowered the compression strain in the skin.

Outward Wave

P P

Skin __- Inward Wave
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Table 114. Summary of Predicted Loads and Failure Modes for the Crippling
Test Panel. D

Stiffener Type _ Combin_ons tba r Predictagi Uniaxial Mode of
SI_ ] Stiffener Initial Buck]rag Failure

! and Ultimate Loads

Obs)

Stepped Hat
With Curved Cap

I

2219 AI 7475 SPF A1 0.256 69,600 Skin Wrinkling
76,800 Comp. Yield

Stepped Hat 2090 A1-Li 2090 SPF AI-Li 0.252
With Curved Cap

68,000 Skin Wrinkling
68,000 Comp. Yield

Beaded Web Hat
With Flat or

Curved Cap

• 2219 AI 7475 SPF AI 0.264 60,000 Skin Wrinkling
79,200 Comp. Yield

Beaded Web Hat 2090 A1-Li 2090 SPF AI-Li 0.252 60,000 Skin Wrinkling
With Flat or 65,000 Comp. Yield

Curved Cap

There is essentially no difference m the predicted the PASCO program
between the flat or curved cap configurations of the beaded web stiffener.

:- ...... i Z r_-7 r :_: i Z " _-" - _]7 _ T _ __;. . :

Divergence of the gages would indicatean inward wave in the skin (i.e.,localbending).

Spotweld tensionstrengthappear_ very good inthesetestssincethe inter-spotweldcripplingafter

ultimateload produced only a few weld pull-offsorfailures.

The _ed web panels exhfbited the _ type of face-wrinkling mode as the stepped hat,

but the wavelength of the buckle appeared shorter. The outer caps of some of the beaded-web
==

panels buckled i_iy-n_rthc potted loading end_st before ultimate load. This was attributed to

the increased thinning of the cap in these areas because of the SPF forming tm)ccss. It was noted

that the stcpped2hat _nfi_tion _d not bucldein these areas; this was attribu_ to the curvature

imposed inthecap.

The beaded-web panels exhibited exceUent post-buckling strength after failure (refer to test

machine travel versus load plots shown in Figure 236). The stepped hat also had some post-

buckling strength, as s_wn h Figure 23& Typical s_ gage pIofffor the beaded-web panels

are shown in Figures 237 through 239. Strain gage locations are shown in Figure 240. Figures

241 and 242 show the failureof t_ical bcaded-wehpands in face wrinkling. The inter-weld

cripplingappears tooccur afterultimateload. A summary of testversuspredictedloads and failure

modes isgiven inTable 114.
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Figure 230. Failure of Panel #4 - 7475 A1 Stepped Hat (Front View).
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Figure 231. Failure of Panel #4 - 7475 A1 Stepped Hat (Rear View).
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Figure 241. Failure of Panel #8 - 7475 Beaded Web, Curved Cap (Front View).
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4.4.1.4.1 Initial Bucklih_
w

m
I

It is of interest to indicate the method of determining the initial buckling load. Normally,

the load at which divergence in the back-to-back gage readings occurs as the load is increased is

considered buckling (i.e., a Southwell plot). As shown by the plots, the divergence and yield

strength were very close, indicating an optimum structure. Thus, to determine the point of face

wrinkling, the strains for each back-to-back gage pair were examined. The load at which the f'n'st

onset of tension in a gage appeared (i.e., reduction in compression strain) was considered initial

buckling. Examples of these selections are shown from the tabulated strain data which was taken

from the General Dynamics test data for the stepped hat panel number 14 and the beaded hat panel

number 18 and are shown in Tables 115 and 116, respectively. The calculated buckling loads for

each panel, determined in this manner, are summarized in Table 117.

4.4.1.5 Crippling Panel Test Load Shortening Analysis

The objective of the load shortening analysis was to compare the axial stiffness (EA) of the

crippling specimens as determined by test with that of the PASCO model representation of each

stiffener/skin material combination.

I
u

I

m

i

During testing, machine head deflections Versus load were recorded. The head deflections

were not valid measurements for stiffener shortening or true computation of the specimen axial

stiffness, however, an alternate approach was utilized for determination of the crippling panels load

shortening. The alternate method consisted of utilization of average axial strain values at

incremental loading of a particular stiffener/skin material combination. A load versus average

strain curve was plotted and the slope of the curve in the linear range was utilized as the

representative test EA. This translates into a mathematical representation of:

EAverage = 8/L _ = Shortening Deflection

L = Length of the specimen

Thus I_Average = r.zi / N at the load increment ei = Axial Strain at ith gage

N = Number of Axial gages utilized

Then P/E = EA Where P/I_ is taken in the curve linear range

It was noted that the stepped hat included axial gages on the webs, whereas the beaded web

gages were not included since it was assumed that the beaded configuration was in a pre-buckled

state and would have a minimal axial stiffness effect. The plots of P versus Ei are shown for

representative stiffener/material combina_ns in Figures 243 through 248.
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Table 115. Straln Gage .and Deflectometer Readings for Panel #14 .(7475 AI)
.... Obtained During Testing at General Dynamics Space Systems Dlvislon.

Gage 2 (lie) -19 -249

Gage 3 Q_e) -12 -218

...... Gage 4 (lie) -1 -187

Gage 5 (I.te) -4 -290

Gage 6 (l.te) 2 -231

Gage 7 (I.te) -3 -242

Gage 8 (J.te) -2 -243

Gage 9 O.te) -1 -251

Gage 10 (tte) -2 -251

Gage 17 _e)-35 -186

Gage 18 (I.te)-33 -273

Gage 19 (I.te', -18 -271

!Gage 21 (J.te_ -17 -307

Gage 22 Q.te', -12 -306

Gage 23 (p.e', -10 -281

Gage 24 O.te', 1 -259

Gage 25 _e_ -36 -226

Gage 26 (I.te_ -14 -215

Gage 27 _e_ -2 -248

Gage 28 (I.tel -34 -323

Time (Sec) 0 49 69 89 109 129 I49 169 189 209
Load(Lbs): 0 4004 !14.503 28.950 42.834 56.670 -68.144 -69.423 -68.921 .67.901

Gage I.D.

Gagel (tte) -28 -305 -1024 -1912 -2757 -3657 -4712 .4003 -3443 -3166

-830 -1656 -2457 -3294 -4262 -3716 -2840 -2052

-848 -1679 -2500 -3399 -4726 -10888 -4398 -4310

-761 -1532 -2233 -2841 -2778 -30 1374 2257

-947 -1799 -2631 -3489 -4357 -3802 -3205 -2933

-910 -1728 -2495 -3257 -3937 -4893 -4910 -4632

-862 -1720 -2539 -3363 -3894 -3490 -3158 -2940

-858 -1714 -2577 -3543 -5050 -6849 -6824 -6589

-855 -1674 -2459 -3203 -3464 158 2649 3889

-854 -1662 -2451 -3264 -4107 -4874 -5008 -4892

Gage 11(J_e) 7 -354 -1055 -1900 -2729 -3800 -7228 -6543 -6259 -6083

Gage 120ae)l-10 -359 -1155 -2079 -2995 -3982 -5353 -3598 -2812 -2181

Gage 130a_)-11 -323 -1108 -1992 -2861 -3748 -4082 -2925 -2311 -1754

Gage 14(I, te) -8 -314 -1072 -1938 -2755 -3597 -3815 -3800 -3798 -3750

Gage 15_e)-17 -309 -963 -1786 -2597 -3364 -3974 -4408 -4697 -4935

Gage16 _e/-25 -297 -1048 -1991 -2831 -3715 -4262 -3737 -3324 -2940

-742 -1447 -2121 -2761 -3200 -3220 -3060 -2744

-889 -1734 -2553 -3338 -3366 -1515 -1634 -1715

-921 -1750 -2568 -3349 -3380 -838 880 2280

-998 -1854 -2731 -3623 -5413 -4016 -2730 -1852

-950 -1783 -2626 -3471 -3241 -1697 -1264 -1007

-925 -1784 -2624 -3451 -4309 -3409 -2842 -2379

-900 -1659 -2414 -3127 -3871 -3983 -4016 -3930

-863 -1631 -2381 -3007 -3074 -3326 -3430 -3480

-864 -1697 -2515 -3268 -3273 -3142 -3178 -3117

-913 -1814 -2720 -3600 -3809 -2689 -2188 -1648

-963 -1806 -2659 -3463 -3579 -2373 -1706 -1107

Gage 29 (I.te_ -16 -360 -1045 -1857 -2694 -3527 -4235 -3956 -3812 -3627

, o l. o.ooo,.2o.ooo,- o. ,o,.4o.oooi.soooo.eoooo .ag oo
 flecmme LD.'i I I I i I
DFFrontti.) I 0 I-0.00_010.000010.00C010.(XX)010.00]0 0.00IS 0.00S0
DFropB_ (i.) I 0 I 0.000010.00_010._01 0.0O2510.0O40 0.0040 -0.00S0
DF Bottom Back (in). I 0 I 00015. [ .00025 [ .00040 [ .00055 ! "00090 0.0160 0.0060
* Note: Negauve deflectometer reading indicates inward movement of the test panel.

.68.000

0.0040
-0.0210
0.1500
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Table 116. Strain Gage and Defl ectometer Readings for Panel #18 (.2.090. AI-Li)
Obtained During Testing at General Dynamics Space Systems Dsvmon.

Time (Sec) 0 55 95 llS 135 155 17_ 19$ 215 235
Load fLbs): 0 - _.894 27.113 38.675 49.525 59.618 63304 63.678 i63.507 62.451

Gage I.D.

Gage 1 (Jae) -23 -499 -2039 -2896 -3831 -5325 -6721 -7018 -7051 -7035

Gage 2 0Je) -2 -419 -1781 -2508 -3122 -3093 536 3831 6600 1746

Gage 3 (J_e) -1 -431 -1880 -2659 -3332 -3557 -2372 -1273 -614 -146

Gage40te) -3 -436 -1863 -2652 -3390 -4142 -3416 -2480 -1815 -1280

Gage50Je) -3 -421 -1931 -2800 -3711 -5077 -8056 -10426 -7797 -3883

Gage60_e) -1 -430 -1931 -2786 -3621 -4337 -4258 -3925 -3556 -3296

Gage 7 0_e) -2 368 -1596 -3053 -4216 -5087 -6101 -7527 -8291 -7588

Gage 8 (.tte) -5 21 -92 -174 -251 -328 -376 -454 -532 -594

Gage 9 (l_e) -4 -13 -21 -16 -24 -67 -211 -288 -308 -292

Gage 10 De) -2 11 -243 -405 -578 -804 -856 -881 -901 -862

Gage 11 (tte', -3 -9 1 14 22 9 -60 -71 -68 -57

Gage 12De', O 139 -1421 -2450 -3300 -3862 -3982 -4093 -4138 -3570

Gage 13 _e_ -4 -41 -79 -81 -91 -111 -49 -38 -42" -50

Gage 14 _el -3 -20 -31 -24 -25 -63 -41 -8 8 14

Gage 15 (j_e) -3 21 -14 -48 -67 -66 -119 -194 -273 -332

Gage 16 _e) -4 -34 -59 -57 -66 -110 -166 -155 -155 -155

Gage 17QJe) -1 -108 -1701 -2619 -3388 -4528 -5615 -5659 -2845 3959

Gage 18 0Je) -2 18 89 137 -188 269 435 531 626 698

Gage 19 De) -3 12 13 -8 -21 -43 -115 -201 -321 -448

Gage 20 De) -6 34 80 80 82 57 -10 -40 -57 -77

Gage 21 (tie) -6 14 29 25 30 19 -48 -78 -94 -111

Gage 22 De) -12 -361 -2264 -3207 -4095 -4959 -5843 -6230 -6226 -5420

Gage 23 De) -6 75 224 272 316 338 352 379 391 370

Gage 24 De) -6 30 59 63 68 67 42 23 -9 -46

Gage 25 De) -7 28 142 207 274 349 504 643 -765 864

Gage 26 _e _, -4 44 52 40 37 -54 70 -1 -143 -310

Gage 27(_e] -0 -578 -2936 -4034 -5747 -7171 -7478 -8931 -9657 -8682

Load (lbs) 0
Deflectomelers LD. *
DF Front (in) 0 -0.0010
DFTop Back (in) 0 0.0005
DF Bottom Back (in) 0 0.0010

* Note:

-10.000 -20.0001.30.000 -40.000

-0.0015 -0.0035 -0.0050
0.0015 0.0050 0.0080
0.0040 0.0070 0.0140

-50.000 -60.000 -64.000

-0.0060 -0.0090 -0.0090
0.0070 -0.0020 0.0500
0.0230 0.0450 0.0950

nlll

Neganve deflectometer reacting m_cams reward movement of 0_e test pane_.
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Table 117. Summary of the Crippling Crippling Panel Test Versus Predicted
Loads.

I.D.

1
2
3
4

Panel Material Tested Ultimate Buckling Initial
Type By Load Load Buckling Load

fibs.) fibs.) fibs) fibs)
S.H. 7475 AI GDSS 84000 71600
S.H. Rat GDSS 79400 62890 67880 69600
S .H. Joined NASA
S.H. to GDSS 83400 69150

2219 AI
5 B.C.C Skin GDSS
6 B.C.C I NASA
7 B.C.C I GDSS
8 B.C.C I GDSS

I
__ 9 B.F.C. I GDSS 63000 57230

10 B.F.C. I NASA
.... 11 B.F.C. I GDSS 67500 62750

__ 12 B.F.C. V GDSS 67000 58530
13 S.H 2090 AI-Li NASA
14 S.H Hat GDSS 70300 63415
15 S.H Joined GDSS 74600 65340 63695 68000
16 S.H to GDSS 73800 63140

2090 AI-Li
-_ 17 B.C.C. Skin NASA

18 B.C.C. I GDSS
19 B.C.C. I GDSS
20 B.C.C. I GDSS

I
21 B.F.C. I GDSS 65800 56970
22 B.F.C. I NASA
23 B.F.C. I GDSS 67200 58520

24 B.F.C. V GDSS 63770 57470

_licted
Iniu Vs. Ultimate Ult. V_

Test Imad Test
fibs)

1.04 1.09
0.91 76800 1.03

1.00 1.09

66500 62550

67900 61770
66300 61010

61780 60000

1.04 0.84

1.03 79200 0.86
1.02 0.84

58500 60000

0.95 0.80

1.05 79200 0.85

0.98 0.85

0.93 1.03
0.96 68O00 1.10
0.93 1.09

65000 54820
65000 58970
65200 56970

56820 60000

0.91 0.96

0.98 68000 0.96

0.95 0.96

57650 60000

0.95 0.97

0.98 6800O 0.99

0.96 0.94

Panel Type: ;.H.= Stepped Hat, = Beaded Web Curved Cap,

B.F.C. = Beaded Web FlatCap

:i w
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4.4.].51 Results and Conclusi9 n

The comparisons of the PASCO model axial stiffness and that obtained through the

crippling test specimen values are summarized in Table 118. The column of the E(tter)x specimen

width was included as an additional check of the values obtained. The PASCO models presented a

satisfactory axial stiffness simulation of the crippling test specimens.

Table 118. Comparison
Stiffness

Summary of the Test Panel Versus Predicted Axial

(EA) of the Crippling Specimens.

Panel Stiffener Material All PASCO Test Stiffness Approximate Ratio
No. Type (Stiff/Skin) Model EA EA tl_ Ether x width Test to

(xl06) (xl06) (xl06) (in) (Lb x 106 = EA) Model

#1 SH 7475/2219 2.618 15.7 15.2 0.256 15.4"

#8 BCC 7475/2219 2.269 13.62 12.8 N/A N/A

#12 BFC 7475/2219 2.269 13.62 13,4 N/A N/A

#15 SH 2090/2090 2.90 17.4 16.7 0.252 17.1"*

#23 BCC 2090/2090 2.28 13.68 12.9 NIA NIA
It

#19 BFC 2090/2090 2.28 13.68 13.7 N/A N/A
* Effective Modulus, Assumed = 10 Msi, ** Effective Modulus, Assumed = 11.3 Msi
tbar = Effective Stiffener to skin tkickness

SH = Stepped Hat, BCC = Beaded Curved Cap, BFC = Beaded Flat Cap

Test EA = P/_L = P/e ave. strain 6 = shortening of specimen (in.)

L = Length of Specimen (in.)
PASCO EA = (All x Width) All = Stiffness per inch of width

W = Specimen Width (6 in.)

0.97

0.94

0.98

0.96

0.94

l.o

N/A &Not applicable for beaded web panel the PASCO that for the beaded web includes the webs,
however, the beaded web contribution to the axial load capability of the stiffener is minimal.

4.4.1.6 CripplingPanel Test Conclusions

_ The following summary conclusions are based on the General Dynamics crippling panel test
results:

The correlation between test and predicted loads was satisfactory.

The mode of initial buckling failure, face wrinkling (similar to cohann buckling of a beam
on an elastic foundation), was expected, since this is typical of a heavy skin-light stiffener
combination.
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3. Gen.eml Dynamics produCe_:! very saris.fa.,_.,.orys_otwelds, for this applicadon; e.g.. no
xmnppmgwasoosu'vc_anerme race wnnxungt,-,urcs oxmespecimens.

4. Sincethett_ for thebeadedhatandsteppedhatarequiteclose, thestcpl_! _t offersabout
10-14% more efficiency on the basis of initial buckling for the same ma_ ......

5. Comparing the ratio of the initial buckling to material density (Fbu/P) for 2090 and 7475

stepped hats indicates that the 2090 material is slightly more efficient for this application, as
would be expected.

6. Since the initial buc_g-and yield strength-were quite c_10se, all the designs appeared to

produce a very good op_num structure.

7. All designs met the required design criterion of 51,000 Ibs (8474 Ibs/in.) uniaxial
compression loading for local buckling.

8. The SPF beaded hat could be made a more structurally efficient configuration if the webs
were chem-milled to a lower thickness; however, this would increase the cost of
fabrication.

9. An improved theoretical thinning profile would be useful in considering any other possible

variations of the SPF hat-stiffener configuration.

4.4.1.7 Crippling Panel Test Recommendations _

The stepped-hat configuration will be utili_d as the column buckling test panel design to

maximize stiffener load carrying ability. Integrally Stiffened smLea_e (vertical stiffeners and hoop-

wise supports integrally formed into the panel) wpuld u_ the beaded web stiffener concept to

minimize load transfer through the side walls of the stiffener which could lead rouge moments at

the point of intersection in the panel. The integrally stiffened panel was not addressed during the

panel test and evaluation portion of this program, however, the concept appears to be viable (due to

the performance of the structural test specimens and through evaluation of the suess analysis

efforts under this program) for vertical and hoop-wise strengthening of b_t-up cryogenic tank

structure.

4.4.2 INTEGRALLY STIFFENED PANEL DEMQHSTRATION ARTICLE

The integrally stiffened panel (shown in Figure 249 and 250) was fab_cated as a

demonstration article. The panel was fabricated as a representation of the type of configuration that

could be fabricate d for an integral SPFstiffener configuration without optimization of the stiffener

or node configuration. An existing die box was sent to Rockwell from NASA Langley and

+_modifiedso _a t back pressure could be applied to the part. The partblankswere coated with

boron ninide (BN) releasing agent (ratherthan ytwia which is generally used for AI-Li alloys, but
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mmpomrily unavailable during this phase of the program) with mixed n_sulzs. The initial panels

fabricated left severe BN deposits on the tool surface which in turn left indentations on the part

surface during the forming cycle, creating an undesirable surface for many of the panels. The

mating surface of the part with the outer skin were not effected, thus resistance spot welding was

successfully accomplished for the panel on schedule,.

4.4.3 COLUMN BUCKLING PANEL FABRICATION

At thecompletion of the cripplingpanel tests,the stepped hat stiffenerconfigurationwas

chosen forcontinueddevelopment based on itsloadcarryingcapability.The stepped hatstiffener

was modeled (refertosection4.1 6)under NASTRAN and optimizationof the stiffenedstructm'e

was conducted. PASCO analysisof the stepped hat stiffenerwas conducted with a largercap

width to enhance the overall stability of the swacture. The panel configuration was chosen based

upon the desired length of the panel (column of at least 60 inches) and limited by the width of

available material (48" minus sealing area). The resulting panel design (refer to Figure 26)

ma_ta_ed the inter-stiffener and inter-spot spacing optimized for the crippling stiffener panels.

W

H
liJ

The tooling concept for the universal die chamber and insert combination used a base-plate

for assured release of the gas pressure during forming with separate stiffener configurations

indexed onto the gas plate with locator pins (as shown in Figure 252). The die chamber and upper

surfacetoolwere machined out of a solidplatesof mild steel(6"x 43" x 74" and 2" x 43" x 74").

The stiffenerswere machined separatelyout of bar stockinorder tominimize materialscrapand

keep handling of the toolingconfigurationsimple. The gas pressureplatewas alsomachined out

•ofplatematerialand was chamfered along thebottom peripheryand grooved toallow forgas flow

away from thefinalpartto thegas outlets.The tooLingwas completed, inspected,and gas lines

were welded onto the outer surface of the tool for introduction of gas pressure and installed into the

4500 ton press in E1 Segundo (refer to Figure 252). Surveys of the thermal stability of the tool

were performed in order to assess the insulation requirements for the die chamber. Proof of

process pans were formed (refer to Figures 253 and 254) for both the 7475 AI and 2090 A1-Li

materials (using pressure versus profiles generated by the Rockwell model and uniaxial SPF tensile

data generated under Task 2). The proof of process parts were inspected for thickness variations

along the flange and for the presence of cavitation in the formed configuration. Cavitation

evaluation showed thatthe partswere freefrom cavitation,thus structuralperformance of the

panels (barring externsl damage) would not be affected by voids in the material
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During forming of the'initial proof parts, it was noted that the gas pressure release from the

tool at the completion of forming was very slow. Future tool designs of this size and nature will

require incorporation of larger gas holes iri order to allow for a maximum flow rate (to minimize

the time necessary to remove the gas from the tool at the completion of the forming cycle).

Modification to the tooling was not performed since the fabrication schedule would not permit any

loss of time during this phase of the program.

During fabrication of the column buckling panels, several panels appeared to have an

increasing variance in distance between stiffeners. Fabrication was stopped in order to assess the

siffiation, it-wasdetermine_:l that _e outer two stiffeners of the last column buckling panel were

misaligned due to shearing of the three locating pins (the pins used were hollow rather than solid)

on the two outer inserts, which caused them to shift and reduce the spacing between the two outer

stiffeners on each side from 1.25 inches to 0.80 inches. The die chamber was removed from the

press, cleaned and the two outer stiffener inserts Were re-aligned and tack welded into place to

assure proper location during the fabrication of the final four panels.

The column buckling test panels were solution heat treated, water quenched, straightened,

and artificially aged. The panels were trimmed, chemically cleaned (refer to Figure 255), and

strain gauged prior to shipment of the panels to General Dynamics. The assembly plan for the

column buckling panels is included application of all internal strain gages to the panels at Rockwell

(refer to Figures 256 through 258) and welding of the stiffeners and skins along with final

assembly at General Dynamics (refer to Figure 259 through 263) Weld certification coupons were

cleaned at the same time as the column buckling panels and outer skins to assure identical oxide

conditions to the panels at _the _t_me of welding. After completion of the welding process, the

panels were inspected and final machined to net dimensions (refer to Figure 264 to 268) The

panels were shipped directly to NASA LaRC for final assembly and testing.

i
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The test plan and predicted behavior of the panels _ discussedqn section 4.1.6 and in

Appendix C.
7

=

4.4.4 DOUBLER-REINFORCED FUSION WELD PANEL

The final panel Configuration that was examined d_ng flais program was the vertical fusion

weld or panel-to-panel joint. The joints are fusion butt-welded together and reinforced with a spot-

welded doubler over the weld. This doubler-reinforced concept eliminates the need for machined

4-362
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Figure 255. Trimmed and Cleaned Column Buckling Panels.

BLACK A{'_[_ .... ""-_,'..1 I t'. mqO/OG_API-I

4-363



u

i
g

g

I

g

I

z

m

u

NI

u

m -
g

m

g

m
U

4-364
:-.I..AL,;,_AND _.,;,:_tTE _"HO"OGRA.PN

J

j_



=

E

BLACi_: Ai",ID W,'--.,iTE _-"_)TOGF(M-'_I
4-365



m

4-366
I=li.ACK AND W_tTE '_--'?I(.)TOG[:_:,,_,._

g ,



I

Figure 259. Spot welding of Column Buckling Panel.
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Figure 260. Spot welding of Column Buckling Panel with Tooling for Spot Weld Location.
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weld lands (commonly Used for launch vehicle pressure vessels at an increased fabrication cost,

and weight penalty to the structure) to reinforce the joint by utilizing the doubler as a major load

carrying member for the fusion weld. The development of the joint was based upon the fusion

weld and resistance spot weld data generated during task 3 (section 4.3) of this program. Specific

doubler testing was conducted under task 3 that provided a greater understanding of the behavior

of the doubler over the Variable Polarity Plasma Arc (VPPA) fusion weld for load transfer. The

test data was then utilized with finite element modeling techniques to predict the behavior of the

fusion weld joint during bi-axial (axial and hoop) loading conditions.

4.4.4.1 Bi-Axial Panel Fabrication

The fusion weld test panels were fabricated from two skins (machined from 0.190" to

0.155" thickness) fusion welded together with a doubler attached to the outer skin over the fusion

weld and two crippling stiffeners attached to the skin material. Prior to assembly of the panels,

weld verification testing was performed on the fusion weld. Welding of the 2219-T81 and 2090-

T83 fusion weld panels were completed and inspected (visually and radiographically). Mechanical

property tests were performed on coupons welded during the panel fabrication in order to assess

the fusion weld strength. The coupon tests were broken into three groups:

1) the fusion weld bead was left intact,

2) the root side of the weld bead was removed to within 0.010" of the original skin contour,
and

3) the Weld bead Was _und flush to the skin contour on both sides of the fusion Weld.

Extensometers were attached to all the test specimens during the tensile testing. Axial strain gages

were applied to the fusion weld zone for coupons with the weld bead ground flush on both sides of

the coupon. The results from the ambient temperature testing of the specimens are shown in

Tables 119 through 125. Optical microscopy of the fusion weld sections (as welded, and with the

bead shaved) is shown as Fi-g_e 269_6r 0.i55" 22i9-T_1 A1 and an as-welded specimen of

0.155" 2090-T83 A1-Li (refer to Figure 270). Analysis of cross-sections from the 2219-T81 and

2090-T83 fusion welds verified the radiographic inspection results showing that the weld was

defect-free.

4.4.4.1.1 Test Procedure

Twenty 9.0 by 1.5 inch dog-bone specimens were removed from each fusion weld test

panels (2219-T81 and 2090-T83). Five of the specimens were tested in the as-welded condition

(weld bead left on the specimen), five were tested with the weld bead shaved down to the parent
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Lower Macro: Weld Bead Shaved on Root Side

Figure 269, Variable Polarity Plasma _ Weld Macro of 0.155" 2219-T81 AI.
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Figure 270. Variable Polarity Plasma Arc Weld Macro of 0.155" 2090-T83 AI-Li.
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metal on one side, and f_,,erc tested with the weld bcadT _avcd down to the paint metal on

both sides of the specimen. Specimen thickness measurements A and C were taken fi'om the

parent metal, and B was taken at the weld bead for each specimen.

t

All specimens were tested on a 20 Kip capacity Insu'on 1125 electro-mechanical test

machine under ambient conditions. A 0.5 inch cxtcnsomcter was positioned over the weld in order

to measure specimen deformation. Elongation was determined over 0.5, 1.0, and 2.0 inches

through the use of gage marks on the specimen (ink, rather than scribe). Width and thickness

measurements were taken at the weld and on either side of the specimen. Specimens that retained

part of the weld bead were tested at a cross-head rate of" 0.05 inch per minute to failure. The

specimens that had the weld bead shaved on both sides of the specimen wcrc instrumented with

FAE-13-06A-35S 13 axi_ s_ gages bonded back-to-back with M-Bond 200 adhesive. These

" _ FS_ _e_W_ loaded at a cross-head rateof 0.02 inch pcrlninUte untilfailure'Load versus

=straindata was recorded at one +Second intcrvOs using an+Orion/Ma_cintosh Data Acquisition

System. " "......................................

Table Z19. Test _Results old'the As-Welded 2219-T81 VPpA FUsion Weld Tensile

Specimens.

Specimen Width Thickness Ftu Fry E % Elongation
I.D. Over the Gage Length

(in3 (in) (ksi) (ksi) (msi_ lf2" I 1.0" I 2.0"
A 0.5027 0.1548

3-1 B 0.5020 0.2378

C 0.5026 0.1563 42.45 16.55 7.65 12.0 9.0 4.0
A 0.5034 0.1559

3-2 B 0.5022 0.2405
C 0.5026 0.1571 43.19 17.26 7.00 12.0 7.0 3.5
A 0.5020 0.1550

3-3 B 0.5007 0.2347
C 0.5018 0.1569 41.66 18.33 5.75 10.0 5.5 2.5
A 0.5015 0.1550

3-4 B 0.5009 0.2313
C 0.5016 0.1571 42.77 18.43 6.95 12.0 5.0 2.5
A 0.5028 0.1552

3-5 B 0.5019 0.2350
C 0.5026 0.1564 43.13 18.45 7.35 12.0 5.0 3.0

AverageValue 42.64 17.80 6.94 11.6 6.3 3.1
Standard Deviation 0.62 0.S6 0.72 0.9 1.7 0.7
Coefficient of Variance (%) 1.46 4.82 10.42 7.71 27.26 21.03

Note: Modulus datawas very low. Phen0n_dna/imibuted tothenon-uniform areaof the as-welded

bead. The majorityof theelongationwas occurringin theweld due toitslower yield

slrengthas compared totheparent material.

4-379



Table 120. Test Results office 2219-T81 VPPA Fusion Weld with the Bead

Ground Down on One Side of Each Tensile Specimen.

Widzh Thickness

fin) fin)
A 0.5032 0.1562

2-2 B 0.5019 0.1796
C 0.5024 0.1532
A 0.5029 0.1559

2-4 B 0.5016 0.1709
C _.5020 0.1519
A 0.5026 0.1546

2-6 B 0.5016 0.1714
C 0.5018 0.1510

A 0.5002 0.1536

2-8 B 0.5014 0.1635

C _0.5018 0.1520

A 0.5028 0.1533

2-10 B 0.5012 0.1675
C 0.5022 0.1513

AverageValue
Standard Deviation
Coefficient of Variance (%)

Fm Fry E

(k._i) (ks'i) (ms'i)
Over the Gage Length

1_" I 1.0" I 2._"

40.34 17.50 9.75 12.0 %0 4.0

40.26 17.70 8.65 14.0 7.0 J 3.5

40.19 18.28 8.95 14.0 6.5 3.5

39.33 17.90 10.85 16.0 8.0 4.0

40.14 17.37 12.25 14.0 7.0 3.5

40.05 17.75 10.09 14.0 7.1 3.7

0.41 0.36 1.48 1.4 0.$ 0.3
!,02 _ 2.01 14.64 10.10 7.71 7.40

g

i

i

B

i

II

II

l

Table 121. Test Results of the 2219-T81 VPPA Fusion Weld with the Bead
Ground Down on Both Sides of Each Tensile Specimen.

% Elongation
Over the Gage Length

1/2- i 1.o"I 20-

Standard Deviation
Coefficient of Variance (%)

Specimen Width Thickness Ftu Fty E
I.D.

fin) fin) (ksi) (ksi) (msi)
A 0.5030 0.1497

2-1 B 0.5019 0.1476
C 0.5023 0.1517 36.94 16.18 10.90 16.0 8.0 4.0
A 0.5036 0.1526

2-3 B 0.5025 0.1518
C 0.5026 0.1463 38.83 1%64 11.40 14.0 8.0 4.0

A 0.5033 0.151
2-5 B 0.5022 0.1497

C 0.5029 0.1475 38.76 18.36 12.50 14.0 8.0 4.0
A 0.5027 0.1520

2-7 B 0.5014 0.1486
C 0.5025 0.1494 38.25 18.59 11.40 16.0 7.0 3.5

A 0.5026 0.1523

2-9 B 0.5014 0.1495
C 0.5023 0.1511 37.81 17.52 9.70 16.0 8.0 4.0

AverageValue 38.12 17.66 11.18 15.2 7.8 3.9
0.78 0.94 1.01 1.I 0.4 0.2
2.03 5.34 9.06 7.72 5.73 $.73
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Table 122. Results of 2090-T83 VPPA Fusion Weld Tensile Tests.

Specimen Width Thickness Fm Fry E % Elongation
I.D. Over the Gage Length

/'in) fin) (kgi) (ks'i) (msi) 1/2" ] 1.0" I 2.0"
A 0.5004 0.1555

2 B 0.4997 0.2640
C 0.5008 [),1558 35.31 19.93 13.80 8.0 4.0 2.5
A 0.4989 0.1561

4 B 0.4984 0.2695
C 0.5000 0.1566 36.78 18.84 15.10 9.0 5,0 2.5
A 0.4991 0.1553

6 B 0.4986 0.2684
C 0.4994 0.1551 34.60 18.33 12.70 8.0 5.0 2.0

A 0.5004 0.1561

8 B 0.4997 0.2697

C 0.5008 0.1548 _.83 18.12 12.50 8.0 4.0 2.50
A 0.4999 0.1565 30.68 18.45 12.40 7.0 4.0 2.5

10 B 0.4995 0.2700
C 0._;005 0.1565
A 0,4993 0.1531

12 B 0.4983 0.2647

C 0.4997 0.1527 36.96 19.00 12.30 10.0 5.5 3.0

AverageValue 34.06 18.78 13.13 0.3 4.6 2.4
Standard Deviation 2.2 7 0.6 S 1.1 1 1.0 0.7 0.4
Coefficient of Variance (_) (;.$2 3.47 8.43 12.39 14.$0 15.$7

Table 123. Results of 2090-T83 VPPA Fusion Weld Tensile Tests, Weld Bead
Ground Flush on One Side.

Specimen Width Thickness
I.D.

Fm Fry E % Elongation

Over the Gage Length
fin) fin) (ksi) (ksi) (msi) 1/2" ] 1.0" ] 2.0"

0.5009 0.1545
0.5000 0.2248
0.5016 0.1547 38.08 18.20 13.4 10.0 5.5 3.0
0.4999 O. 1566
0.4990 0.2200

0.5003 0.1558 39.19 18.35 13.4 10.0 6.0 3.5
0.5000 0.1552 39.18 18.56 15.6 12.0 7.0 3.5
0.4990 0.2197
O.5007 0.1561
0.4999 O. 1561
0.4992 0.2271
0.5002 0.1552 35.31 17.94 17.40 8.0 5.0 2.5
0.4997 0.1540 27.94 16.44 14.70 9.0 4.5 2.0
0.4985 0.2291
0.5010 0.1532
0.4995 O. 1544 36.62 19.64 14.40 10.0 5.5 2.5
0.4986 0.2232
0.5O03 0.1531

A

1 B
C

A
3 B

C

A

5 B
C

A

7 B

C
A

9 B

C
A

II B

C

AverageValoe
Standard Deviation

Coefficient of Variance (%)

35.72 18.19 14.82 9.8 $.6 2.0
4.28 1.04 1.52 1.3 0.9 0.6
11.98 5.71 10.23 13.$2 15.42 21.37
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Table 124.

I.D.

A
2-01 B

2-02 A
B

2-03 A
B

2-04 A
B

Width

fin)
0.4993

0.4993

0.4990

0.4994

Results of 2090-T83 VPPA Fusion Weld Tensile Test.

Thickness

fin)
0.1565
O. 1566

0.1570
0.1569

0.1568

0.1567

0.1548
0.1547

Ftu

(ksi)

35.2

37.0

35.2

36.5

Fry

flc_l

19.6

18.4

19.0

21.4

Ill

E

.(msi_

16.0

14.2

14.2

12.5

% Elongation
Over the Gage Length

lr2" 1 1.0" 12.0"

8.0 5.0 2.5

9.0 5.0 3.0

AversgeValue 35.94 19.63 14.23 8,5 5,0 2.8
Standard Deviation 0.91 1.28 1.43 0.6 0.0 0.3
Coefficient of Variance (%) 2.$4 6.$2 i0.05 6.79 0.0 10.$

=

Table 125. Results of 2090-T83 VPPA Fusion Weld Tensile Tests, Weld Bead
Ground Flush on One Side.

Specimen Width Thickness Ftu Fry E % Elongation
I.D. Over the Gage Lent.,-dl

fin) fin1 fksil (ksi_ (msil 1/2" I 1.0" ] 2._"

A 0.4990 0.1556 35.0 18.2 13.5 8.0 5.0 2.5
1-01 B 0.1559

1-02 A 0.4993 0.1558
B 0.1557 35.8 19.4 12.8 8.0 6.0 3.5

1-03 A 0.4989 0.1556

B 0.1557 33.6 19.5 15.2 I0.0 4.0 2.5

1-04 A 0.4996 0.1556

B 0.1557 34.7 20.1 16.1 9.0 5.0 2.5

1-05 A 0.4997 0.1556

B 0.1557 32.9 19.9 14.3 I0.0 5.0 2.5

1-06 A 0.4990 0.1549

B 0.1545 36.9 18.7 12.9 10.0 5.0 2.5

Averageyalue 34.8 -I9-;3..... 14.13 9.2 5.0
Standard Deviation 1.44 0.72 1.32 1.0 0.6
Coefficient of Variance (%) 4.15 3.73 9.35 10.73 12.65

2.7
0.4

15.31
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The fusion welded panels were accepted after the weld verification testing, and machined to

a net shape condition. The reinforcement doubler was resistance spot welded onto panel over the

shaved weld bead (refer to Figure 271). The SPF stepped hat stiffeners were subsequently located

and welded onto the test panel and the entire panels was inspected (refer to Figure 272). The

finished test panels were machined to final contour (fiat and parallel) and inspected for dimensional

integrity. Final assembly of the fusion weld panels into the test fixture (refer to Figures 273

through 275) was initiated at General Dynamics. The doubler reinforced fusion weld panels were

shipped to NASA Langley for completion of assembly and f'mal testing. The predicted behavior of

the panels is covered under section 4.1.8 and the test plan is included as Appendix F.

4.5 NDE & OUALITY ASSURANCE

The NDE and quality assurance of SPF structure and resistance spot weld joints was

evaluated and enhanced wherever possible during the program. The superplastic forming process

has been widely studied for titanium, steel, inconel and aluminum materials. Material and

fabrication procedures have been developed for each material system that allow for real-time

process control during fabrication (generally through the control of variables such as temperature,

gas pressure, manufacturing tolerances, gas cleanliness, tooling materials, releasing agent,

inspection methods, etc.). Another area that has been widely developed for quality control of the

SPF process is predictive forming methodologies. Forming methodologies enable the design to

be critically evaluated for manufacturability prior to design freeze and fabrication. The in-process

control of superplastic forming, when combined with the p_ctive methodologies of the forming

process, ensure the highest quality of the desired structure.

Existing process specifications for aluminum at Rockwell were modified to include 2090

and 8090 A1-Li. The modifications to the specification were based upon uniaxial test data and

producibility analysis (based upon the predictive modeling of the material prior to forming) carried

out under this pro_. The main areas that were Critical-for understanding the materials were the

strain rate and forming temperature that result in the lowest flow stress (with the highest uniform

elongation) and the cavitation behavior of each material (refer to section 4.2). The evaluation of the

superplastic materi_variables resulted in selection of a duplex strain rate for both the 2090 and

8090 materials (2E-3 for strains up to 0.5 after which the strain rate is decreased to 2E-4 for the

remainder of the forming process), thermal control of 950_.+ lO°F with a maximum back pressure

of 600 psi (minimum of 200 psi). Post-formed thermal processing included a non-optimized heat

treatment with the minimum resulting properties as shown in Table 126.
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'I'ne we1 _ding ND E and quality control issues were addressed during resistance spot welding

development (refer to section 4.3) The evaluation of weld quality was based upon monitoring of

the process parameters for resistance spot welding (forge force, heat, current, etc.) that were

recorded during each welding operation andevaluafing-the parameters for an acceptable versus

unacceptable weld. The out-of-tolerance control areas for the welding process were determined

.... through evaluations of informa_fion generated d_g the Taguchi design of experiment tests and the

heat sensitivity testing. The acceptable limits for each variable in the welding process were

identified and used as boundaries (upper and lower limits) for the fabrication of acceptable

resist_ance spot welds (h0WeVer,/'adi0graphic inspection, lap shear testing, and metallographic

examination of welds was performed during this program in order to fully characterize the

process). The next step for complete NDE of the resistance spot weld process would be to include

automatic feed-back control (or in-process control) for the welding equipment that would control

_the-se_gs of the Weld _u|p-mefif_ thafout-of-tole_ce Welds could not be made. However,

investigation of automatic feedback control for resistance spot welding was out of the scope of this

program.

Table 126. T62 Heat Treatment of AI.Li and Minimum Resultant Tensile

Properties.

Alloy

2O90

809O

Thermal Temperature Time at
Treatment Temperature

'Solution 1000 + 10 30 minutes

Artificial

Age

Solution

350 + 5

1013 + 10

300+5

20 hours

30 minutes

36 to 48
hours

Ftu

58

57

Fry Elongation

48

45

2

2

w

w

w

416 --LiF'E'_c_ cosT ANALYSIS ......

The "Low Cost, SPF Aluminum Cryogenic Tank Structures for ALS and Future

Hypersonic Vehicles" examined the application of superplastic formed (SPF) structure as a cost

effective means to fabricate a cryogenic tank. The goal of the life cycle cost (LCC) study was to

' evaluate the-cost sav_gs+or p¢l_ assix:iated with u_king a +b_t-up S_C_S approach versus

integrally machined structure for the Hydrogen tank. The built-up concept uses stiffeners,

specifically,-superplasfically formed stiffener panels, brake formed hafsections, or "I" extrusions,

4-389



joined to a skin panel. The flow of the _ study included evaluation of three built-up concepts

represented b_Y_two d_fferent ma_ sy_stems, and a baseline concept, integral machining. A

representation of the LC_ amflysis flow is shown as Figure 276 for review.

The General Dynamics ALS "L" vehicle configuration (described _ section 4.1 of this

report)Was ' asutilized the baseline for _e study (refer toFi_277). _o-_=,S cryogenic tank is

a load-bearing member of the vehicle and is not pressure stabilized. Thus the tank must be able to

support both its weight, and the loading conditions for the vehicle: ground (payload, and weather

loads such as wind which would induce bending) and thrust during launch. The axial loads are

transferred through the combination of the vertical stiffeners and skin, and the hoop or pressure

loads are transferred through the skin and the hoop direction stiffeners. The stiffener concepts

(both built-up and integrally machined) examined during theLCC _alysis for the Hydrogen tank

are shown in Figures 278 through 282. Each fabrication method utilized a fabrication flow for

processing and assembly of the panels shown as Figures 283 through 289.

4.6.1 Ground Rules and Assumptions

The General Dynamics Space Systems Division ALS vehicle cost model was utilized for

this study to examine the effects that structural weight and fabrication costs have on the life cycle

cost (LCC) of the vehicle. The informationwas gathered for each fabrication process examined for

the LH 2 tank. The fabrication and assembly data used during the analysis was compiled by both

General Dynamics and Rockwell International. The generation of the cost data was divided such

that one company provided information on fabrication of the structural components, and the other

provided data on handling and assembly of the LH 2 tank su'ucmre. The division was made to

assure continuity in estimating the fabrication hours for each process.

The data gathered for the life cycle cost analysis included the costs of the raw materials

(extrusions and sheet materials: 'T' exmasions, -T3 sheet for outer skins, superplastic sheet, and -

T3 sheet for brake forming), fabrication hours for the superplastic formed (SPF) stiffener panels

and braked formed hat structure, special tooling (recurring and non-recurring costs and hours),

and hours for bar code identification, heat treatment, trimming, inspection, cleaning, storage

(temporary), joining, and final assembly. Both groups of data (fabrication and assembly) were

reviewed and accepted by each company and consolidated into a fabrication package, prior to

inclusion into the analysis. The LCC cost estimating methodology, ground-rules and break-down

of the hours, costs and weights for each process are shown in Tables 12"/through 136.
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Figure 279. Built-Up SPF Stiffener Panel Configuration.
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Table 128. Ground Rules for LCC Analysis.

4.6.2

Prel/mina Information:

# of Vehicles pery_r = 20

47 pan.chicle

• All Stiffener to Outer Skin Joints are Resistance Spot Welding
• All Panel to Panel Joints are variable polarity plasma arc fusion welded with

resistance spot welded sheet doublers over the joints
• All Dollars are in Yr. 2000
• Panel Size = 60" x 282.7"
• Outer skin = 2090 Aluminum-.Utl_um in the -T3 condition
• SPF Alun_um - Heat Treated to -T62

• Brake Formed Aluminum = -T3 Aged to -T8
• Exu'usions Aluminum = -I"8
• Material will be available in 60" widths

• Tooling for SPF will be fabricated out of high grade corrosion resistant
Steel)

Summary of Life Cycle Cost Analysis

+

The_suits of the analysis represented in Tables 130 through 136 showed the cost to

fabricate one vehicles cryogenic tanks (T1 dollars, two tanks per vehicle), 307 vehicles ('1"307

dollars, two tanks per vehicle), and a projected build of 1000 vehicles (TI_, two tanks per

vehicle). A summary of the costs for the tanks are shown as Table 137. The integrally machined

configuration (integrally machined 2219 Al) is the most costly system at T1, and at _ (or the

307th vehicle built) however at TI000, the disparity in purchase price between built-up

configurations and the integrally machined concept begins to become less apparent.

In the coarse of the program, it was difficult to ascertain the value of weight to the vehicle

versus amount of payload that would have to be sacrificed for each pound of structural weight.

However, ff the value were similar to a Shuttle type vehicle in that each pound saved for the vehicle

allowed for increase to the payload manifest, each pound could be worth up to $300. In that case

the modified purchase Imce, due to weight savings or penalty, +_+" (refer to Table 138) is shown in

Table 139 for each configuration (based offof the integrally machined concept). Using the $300/lb

ratio,the SPF Al-Li conCe+pts provide for ipproxirnately 40_ 48%-c0st savings over the integrally

machined concept, while the SPF Al concept provided a 17 to 26% cost savings. The cost savings

or penalties are shown as Table 140. Since this is an expencIabie vehicle, the goal of _tion

of fabrication and material cost is of the utmost importance. However, weight savings should be

kept in the picture as it relates to potential payload into space. _....
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Table 130. LCC Hours and Cost Information for Superplastic Formed Stiffened
Panels for 2090 Aluminum LH 2 Tank Structure at Ts, T3o7 and TIOOO.

m

SPF SUMMARY - 2090

P.ECt_RING ESTIMATE

PAB SEALING

PREPARE BLA]_ POP. PORMINO

I_RM PART

HAT POST PORM PROC_S

OLrll_ SKIN

DOUBL.I_S

RING FRAME CAPS

PORM BARREL SECTION

MAJOR CYL ASSY

SUBTOTAL

b'u'PPORT LABOR

_AL LABOR I'_S

# PARTS

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BULKHEAD-S188K ea

TI Hours AVG. H_ _ 1 Trek

Per Part 2"1 Hours T307 Hours T1000Hours

6 30A 182.4 60.5 48.2

6 22.0 132.0 43.8 34.9

6 59.6 357.6 227.2 203.4

6 176.5 1059.0 386.7 317.0

6 101.8 610.8 356.2 322.8

6 43.2 259.2 113.5 97.4

6 29.5 177.0 58.7 46.8

6 820.6 4923.4 1810.8 1487.6

1 1842.6 1842.6 830.6 717.5

3707 lb.

9544.0 3883.1 3275.5

5089.3 4344.7 1763.1

14633.3 8227.8 5038.6

2 Neh

1"15

Fy'87 $K

$1,463K

'r397$

F_7 SK

$823K

$14.93K

$752.0K

1"10005

Fy'S7 $K

$504K

PURCHASE SKIN MATL @ $10.8 Ab 14038 lb.

PURCHASE STIFF MATL (SP_ @ $ 27.0/lb 7721 lb.

PURCHASE SPLICE MAn. @ $10.8/Ib 884 lb.

PURCHASE FABRICATED RINGS (AVG. 307 VEH.)

MAJOR RING FRAME @ $ 95.8 Ab 1615 lb.

60-INCH RING FRAME, 3 SECT @ $ 79.4/Ib 1710 lb.

30-INCH P.ING FRAME, 3 SECT @ $10.8 _qb 248 lb,

FASTENERS _-IUCK BLIND PIVOT __ $180.2/Ib 19 lb.

Average Cost of 2 Tanks (I Vehicle)

Average Cost of I Tank

Total Weight ef One Tank 28,836 lb.

Average Recurring Dollars per Pound for I Vehicle

2 Neh

2 /Veh

2/Veh

2/Veh

2 Neh

2 Neh

2 /Veh

$303.2K

$416.9K

$19.1K

$309.4K

$271.5K

$SAK

$6.8K

S3,563K $2,922.1K

$1,78!AK SI_I61.1K

$2,603.7.K

@$61.8/Ib @$50.7/Ib @$45.1/Ib

MATERIAL COSTS HAVE BEEN ADJUSTED FROM FYgO TO FY87 $

(F_$CAIATION FACTOR = 1.111 TO GET FROM FY87 TO FY 90)

AL-L? SHEET = $12/LB IN FYgO, $10.80/!.,B IN FY87

ALL? SHEET ($PF GRADE) = $30/12 IN FYgO, $27/LB IN FY87

ALL? EXTRUSION = $20/12 IN FYgO, $18/12 IN FY87

NON-RECURRING ESTIMATE

TOOLINO

SPF TOOL $63.2K

* 2 TANKS PER VEHICLE
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Table 131.
Panels

LCC Hours and Cost Information for Superplastic Formed Stiffened
for 7475 Aluminum LH 2 Tank Structure at TI, Tso7 and T1ooo.

SPF SUMMAR Y - 7475

T1 Hours

rECURRING ESTIMATE # PARTS Per Part

FAB SEALING FRAME 6 30.4

PREPARE BLANK FOR FORMING 6 22.0

FORM PART 6 59.6

HAT POST FORM PROCESS 6 176.5

OU'II_ SKIN 6 101.8

DOUBLERS 6 43.2

RING FRAME CAPS 6 29.5

FORM BARRI_ SECTION 6 714.8

MAJOR CYL ASSY 1 1842.6

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BLrLKHEAD-$188K ca 4106 Ibs 2 /Veh

AVG. I-_S FOR I Tank

T1 Hours T307 Hours T1000 Hours

182A 60.5 48.2

132.0 43.8 34.9

357.6 222.2 203A

1059.0 386.7 317.0

610.8 356.2 322.8

259.2 113.5 97.4

177.0 58.7 46.8

4288.8 3006.4 2437.4

1842.6 830.6 717.5

8909.4 5078.7 4225.4

4752.6 4301.4 2267.1

13662.0 9380.1 6492.4

TI$

Fy'87 $K

$l,366K

1"3075

Fy'S7SK
$938K

$14.78K

$752.0K

T1000S
F7'$7$K
$649K

PURCHASE SKIN MAT[. @ $ 3.1/Ib16570 Ibs 2 /Vch

PURCHASE STIFF MArL (AL-LI Sh @ $ I0.8/Ib 8267 Ibs 2 /Veh

PURCHASE SPLICE MATL @ $ 3.1/Ib 1016 Ibs 2 Neh

PURCHASE FABRICATED RINGS (AVG. 307 VEH.)

MAJOR RING FRAME @$95.8/Ib 16151bs 2 /Vch

60-INCH RING FRAME, 3 SECT @ $ 79.4/lb 1898 Ibs 2 /Veh

$I02.7K

$178.6K

$6.3K

$309.4K

$301.4K

30-INCH RING FRAME, 3 SECT @$3.1/lb

FASTENERS (HUCK BLIND RIVOT (_ $180.2/lb

Average Cost of 2 Tanks (1 Vehicle)

Average Cost of 1 Tank

Total Weight of One Tank 32,505 Ibs

Average Recurring Dollars per Pound for I Vehicle

276 lbs 2 /Veh

15 lbs 2 /Vch

$3,03'9K

$I,519.3K

$1.7K

$5.4K

$2,610.3K

$I,305.2K

@ $ 46.7/Ib@ $40.2/Ib

$2,321.6K

$I_160.8K

@ $ 35.7/lb

MATERIAL COSTS HAVE BEEN ADJUSTED FROM FY90 TO FY87 $

(ESCALATION FACTOR = 1.111 TO GET FROM FY87 TO FY 90)

2219 SHEET ffi $3.43/I.,B IN FYgO, $3.091LB IN FY87

7475 SHEET (SPF GRADE)= $121LB IN FYgO, $10.801I.,B IN FY87

STD EXTRUSION = $4.50/I.,B IN FYgO, $4.051I.,B IN FY87

30-INCH RING MATERIAL PRICE = SKIN MATERIAL PRICE

NON-RECURRING ESTIMATE

TOOLING

SPF TOOL $63.2K

* 2 TANKS PER VEHICLE
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Table 132. LCC Hours and Cost Information for Brake Formed Stiffened Panels
for 2090 Aluminum LH 2 Tank Structure at Tl, T307 and T1ooo. III

BRAKE FORMING SUMMARY -2090

TI Hours

RECURRING ESTIMATE

BRAKE PORM HAT

HAT POST FORM PROCESS

OUTER SKIN

DOUBLERS

FORM BARREL SECTION

MAJOR CYL ASSY

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

AVG. HRS FOR 1 Tank

# PARTS Per Part T1 Hours T307 Hours Ti000 Hours

6 120.0 720.0 353.5 310.7

6 112.5 675.0 246.9 202.5

6 101.5 609.0 355.6 322.3

6 43.2 259.2 113.5 97.4

6 1152.7 6916.2 2544.5 2090.4

1 1842.6 1842.6 830.6 717.5

11022.0 4444.7 3740.8

5873.5 4334.8 2010.0

16895.5 8779.5 5750.7

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BUL_D-$188K ea

PURCHASE SKIN MATL @ $10.8/lb

PURCHASE STIFF MATL (AL-LI Sh @ $10.8/Ib

PURCHASE SPLICE MATL @ $10.8/lb

3707 lbs 2 /Veh

14505 lbs 2 /Veh

9042 lbs 2 /Veh

922 lbs 2 /Veh

TI$

Ff87 $K

$1,690K

13075

Fy'87 $K

$878K

$20.39K

$752.0K

$313.3K

$195.3K

$19.9K

110005

1_'87 $K

$575I(

PURCHASE FABRICATED RINGS (AVG. 307 VEH.)

MAJOR RING FRAME @ $ 95.8/Ib

60-INCH RING FRAME, 3 SECT @ $ 79.4/lb

30-INCH RING FRAME. 3 SECT @ $ 79.4/lb

FASTENERS _'IUCK BLIND RIVOT _ $180.2/ib

Average Cost of 2 Tanks (l Vehicle)

Average Cost of I Tank

Total Weight of One Tank 31,306 lbs

Average Recurring Dollars per Pound for I Vehicle

16151bs 2 /Veh

17131bs 2 /Veh

1562 lbs 2 /Veh

30 lbs 2 /Veh

$3,831K

$1,915.4K

$309.4K

$272.0K

$248.0K

$10.8K

$3,019.2K

$1_509.6K

@ $ 61.2/Ib @ $ 48.2/Ib @ $ 43.4/Ib

MATERIAL COSTS HAVE BEEN ADJUSTED FROM FY90 TO FY87 $

(ESCALATION FACTOR = 1.111 TO GET FROM FY87 TO FY 90)

AL-L! SHEET ffi$12/LB IN FYgo, $10.80I!.,B IN FY87

AL-L! SHEET (SPF GRADE) = $30/!.,B IN FYgo, $271LB IN FY87

AI.,-L! EXTRUSION = $201LB IN FYgO, $18/i..B IN FY87

NON-RECURRING ESTIMATE

TOOLING

PRESS BRAKE

DIE

TOTAL

$74.5K

$2.5K

$77 .OK

* 2 TANKS PER VEHICLE
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Table 133.
for

LCC Hours and Cost Information for Brake Formed Stiffened Panels
2219 Aluminum LH 2 Tank Structure at T1, T3e7and TIo00.

w

BRAKE FORMING SUMMARY - 2219

T1 Hours

RECURRING ESTIMATE

BRAKE FORM HAT

HAT POST FORM PROCESS

OUTER SKIN

DOUBLERS

FORM BARREL SECTION

MAJOR CYL ASSY

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

AVG. HRS FOR 1 Tank

# PARTS Per Part TI Hours T307 Hours T1000 Hours

6 120.0 720.0 353.5 310.7

6 112.5 675.0 246.9 202.5

6 101.5 609.0 355.6 322.3

6 43.2 259.2 113.5 97.4

6 1152.7 6916.2 2544.5 2090.4

1 1842.6 1842.6 830.6 717.5

4106 Ibs

17004 lbs

10161 Ibs

1055 lbs

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/H'R WELDING)

PURCHASE BULKHEAD-S188K ea

PURCHASE SKIN MATL @ $ 3.1/lb

PURCHASE STIFF MATL (AL Shoe( @ $ 3.1/lb

PURCHASE SPLICE MATL @ $ 3.1/lb

11022.0 4444.7 3740.8

5873.5 3804.5 2010.0

16895.5 8249.2 5750.7

2 /Veh

2 /Veh

2 /Veh

2 /Veh

TI$

Fy'87 $K

$1,690K

1"3075

Fy'87 $K

$825K

$20.39K

$752.0K

$105.4K

$63.0K

$6.5K

TI000$

Fy'87 SK

$575K

PURCHASE FABRICATED RINGS (AVG. 307 VEH.)

MAJOR RING FRAME @ $ 95.8/Ib 1615 lbs

60-INCH RING FRAME, 3 SECT @ $ 79.4/Ib 1898 lbs

30-INCH RING FRAME, 3 SECT @ $ 79.4/ib 1740 ]bs

FASTENERS_(HUCK BLIND RIVOT .._ $180.2/lb 30 lbs

Raw Material Weight and Average Cost of 307 Vehicles
AVERAGE COST OF 614 TANKS*

Total Weight of One Tank 35,576 lbs

Average Recurring Dollars per Pound for 307 Vehicles

2 Neh

2 Neh

2 Neh

2 /Vch

$309.4K

$301.4K

$276.3K

$10.8K

$3.535K $2,670.2K

$I,767.4K $I,335.1K

@549.7/ib @$37.5/1b

$2_420.4K

$1,210.2K

@ $ 34.0/Ib

MATERIAL COSTS HAVE BEEN ADJUSTED FROM FY90 TO FY87 $

(ESCALATION FACTOR = l.III TO GET FROM FY87 TO FY 90)

2219 SHEET= $3.43/LB IN FY90, $3.09/LB IN FT87

7475 SHEET (SPF GRADE) = $12/LB IN FY90, $10.80/LB IN FY87

STD EXTRUSION = $4.50/LB IN FYgo, $4.05/LB IN FY87

_ION-RECURRING ESTIMATE

TOOLING

PRESS BRAKE

DIE

TOTAL

$74.5K

$2.5K

$77.0K

* 2 TANKS PER VEHICLE
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Table-1_34' LCC HoursandCost Information-for _!i_Extruslon stiffened Panels
for 2090 Aluminum LH 2 Tank Structure at TI, T307 and Ttooo.

g

Extrusion SUMMARY - 2090

TI Hours

RECURRING ESTIMATE # PARTS

CUT EXTRUSION TO SIZE 6

]RAT POST FORM PROCESS 6

OU'H_ SKIN 6

DOUBLERS 6

FORM BARREL SECTION 6

MAJOR CYL ASSY 1

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BULKHEAD-S188K ca

AVG. HRS FOR 1 Tank

Per Barrel TI Hours T307 Hours "11000 Hours

19.2 115.2 38.2 30.5

78.7 472.2 156.7 124.8

101.8 610.8 356.2 322.8

43.2 259.2 113.5 97.4

1501.1 9006.6 3318.6 2727.4

1842.6 1842.6 830.6 717.5

3707 lbs 2 /Veh

12306.6 4813.9 4020.4

6555.2 4730.1 2158.3

18861.8 9544.0 6178.8

TI$

F_,'87$K

$1,886K

_$

Fy'87$K

$954K

$25.91K

$752.0K

I"I0005

_'g'l$K

$618K

PURCHASE SKIN MATL

PURCHASE STIFF MATL (EXTRUS @ $18.0/lb

PURCHASE DOUBLER MATL @ $10.8/lb

PURCHASE FABRICATED RINGS(AVG. 307 VEH.)

MAJOR RING FRAME @ $ 95.8/Ib

60-INCH RING FRAME, 3 SECT @ $ 79.4/lb

30-INCH RING FRAME, 3 SECT @ $ 79.4/lb

FASTENERS CKBOL $131.3/Ib

Average Cost of 2 Tanks (1 Vehicle)

Average Cost of 1 Tank

Total Weight of One Tank 31,627 Ibs

Average Recurring Dollars per Pound for I Vehicle

@ $10.8/lb 14462 Ibs 2 /Vch

8990 lbs 2 /Veh

921 lbs 2 /Vch

1615 lbs 2 /Vch

1710 lbs 2 /Veh

1559 lbs 2 /Vch

561bs 2 /Veh

33020 Ibs

$312.4K

$323.6K

$19.9K

$309.3K

$271.5K

$247.6K

$14.8K

$4,163K

$2,081.6K

$3,231.5K

$1,615,gK

@$65.8/1b @$51.1/!b

S_ggS.0X
$1,447.5K

@ $ 45.g/lb

MATF, RIAL COSTS HAVE BEEN ADJUSTED FROM FY90 TO FY87 $

(ESCALATION FACTOR = 1.Ill TO GET FROM FY87 TO FY 90)

AL.L! SHEET = $1211.,B IN FY90, $10.80/LB IN FY87

AL-L! SHEET (SPF GRADE)= $301LB IN FYgO, $271I.,B IN FY87

AL-LI EXTRUSION = $201LB IN FYgO, $IS/LB IN FY87

AI.,-L! SHEET (SPF GRADE) = $301LB IN FY90, $271LB IN FY87

AL-U EXTRUSION = $201LB IN FYgO, $18/I.,B IN FY87

TOOLING
Extrusion Die

$2 .OK
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Table 135.
for

LCC Hours and
2219 Aluminum

Cost Information for 'q" Extrusion Stiffened Panels

LH2 Tank Structure at Tz, Tso7 and Tzooo.
=

Extrusion SUMMARY - 2219

TI Hours AVG. HRS FOR 1 Tank

RECURRING ESTIMATE

CUT EXTRUSION TO SIZE

HAT POST FORM PROCESS

OUTER SKIN

DOUBLERS

FORM BARREL SECTION

MAJOR CYL ASSY

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

# PARTS Per Barrel TI Hours T307 Hours TI000 Hours

6 19.8 ] 18.8 39A 31.4

6 81.0 486.0 131.3 128A

6 I01.8 610.8 356.2 3218

6 43.2 259.2 113.5 97.4

6 1521.4 9128.4 3367.5 2768.6

1 1842.6 1842.6 830.6 717.5

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BLTLKHEAD-$188K ea 4106 lbs

PURCHASE SKIN MATL @ $ 3.1/lb 16912"1bs

PURCHASE STIFF MATL (EXTRUS @ $ 4.1/Ib 10185 lbs

PURCHASE DOUBLER MATL @ $ 3.1/lb 1052 Ibs

PURCHASE FABRICATED RINGS(AVG. 307 VEH.)

12445.8 4838.5 4066.1

6629.1 4051.6 2182.6

19074.9 8890.2 6248.7

MAJOR RING FRAME

60-1NCH RING FRAME, 3 SECT

30-INCH RING FRAME, 3 SECT

FASTENERS (HUCKBOLT)

Average Cost of 2 Tanks (1 Vehicle)

Average Cost of 1 Tank

Total Weight of One Tank

2 /Veh

2 Neh

2 /Veh

2 /Veh

@$95.8/!b 16151bs 2 /Veh

@$79.4/1b 18981bs 2 /Veh

@ $ 79.4/]b 1740 lbs 2 /Veh

¢_ $131.3/Ib 54 ibs 2 /Veh

35,970Ibs

37562 ibs

TI$

Fy'87 $K

$1,907K

Average Recurring Dollars per Pound for I Vehicle

$3,782K .

$I,890.8K

T3075

Fy'89 SK

$889K

$25.91K

$752.0K

$I04.9K

$83.5K

$6.5K

$309.3K

$301.4K

$276.3K

$14.2K

@ $ 52.6jqb @ $ 38.4/Ib

TI000$

_,s'1 $K

$625K

@ $ 34.7/Ib

MATERIAL COSTS HAVE BEEN ADJUSTED FROM FYgO TO FY87 $

(ESC_.AI.ATIONFACTOR = I.IIITO GET FROM FY87 TO FY 90)

AL-L! SHEET = $]2/LB IN FYgO, $10.801I.,B IN FY87

AL.L! SHEET (SPF GRADE) = $30/I.,B IN F}'90, $27/LB IN FY87

AL-L! EXTRUSION = $20/LB IN FYgO, $18/1.,B IN FY87

AL-L! SHEET (SPF GRADE) = $30/LB IN FYgO, $27//.,8 IN FY87

AL-U EXTRUSION = $20/LB IN FYgO, $]81LB IN FY87

TOOLING

ExtrusionDie

$2.0K
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Table 136. LCC Hours and Cost Information for Integrally Stiffened Machined
Panels for 2219 AIumlnum LH 2 Tank Structure at TI, T307 and Tlooo.

RECURRING ESTIMATE

OUTER SKIN

IaORM BARREL SECTION

MAJOR CYL ASSY

SUBTOTAL

SUPPORT LABOR

TOTAL LABOR HRS

Machined Summary - 2219
TI Hours

# PARTS Per Part

3

3

]

LABOR DOLLARS FOR 2 TANKS

RADIOGRAPHIC MATL ($10/HR WELDING)

PURCHASE BULKHEAD-S] 20K ea

AVG. HRS FOR 1 Tank

T1 Hours "1"307Hours

7,580 6,155

7,580 1,348

2_527 1_417

17687.6 8919.6

9410.5 7278.5

T1000 Ham

6,009

111

1,273

7393.2

3948.0

27098.1 16198.1 113413

4106 lbs 2/Veh

PURCHASE SKIN MATL @ $ 3.1/lb 95908 Ibs 2/Veh

PURCHASE FABRICATED RINGS (AVG. 307 VEH.)

TI$

Fy'87 $K

$2,71 OK

'I"3075

Fy'87 SK

$1,619.8K

$7.3K

$480.0K

$594.6K

T10005

Fy_7 $K

$I,134K

MAJOR RING FRAME @ $ 95.8/Ib

60-INCH RING FRAME, 3 SECT @ $ 79.4/lb

30-INCH RING FRAME, 3 SECT @ $ 79.4/lb

FASTENERS (HUCK RIVOT).....__._ $131.3/lb

Average Cost of 2 Tanks (1 Vehicle)

Average Cost of I Tank

Total Weight of One Tank 32,356 lbs

Average Recurring Dollars per Pound for I Vehicle

646 lbs 2/Veh

2989 lbs 2/Veh

1827 Ibs 2/Veh

75 lbs 2/Veh

$4:225K

$2_! 12.6K

$123.8K

$474.7K

$290.1K

$19.7K

$3,610.0K

$I_805.0K

@ $ 65.3/lb @ $ 55.8/lb @ $ 40.9/lb

MATF_,R/AL COSTS HAVE BEEN ADJUSTED FROM FYgo TO FY87 $

(ESCALATION FACTOR = 1311 TO GET FROM FY87 TO FY 90)

2219 SHEET= $3.43/LBIN FYgO. $3.09/LB IN FY87

NON-RECURRING ESTIMATE

TOOLING

CREATE NC MACHINE TAPE (60 HRS)

FABRICATE VACUUM CHUCK (140 HRS)

TOTAL

$3 .OK

$7.OK

$10.OK

* 2 TANKS PER VEHICLE

** AVERAGE TANK FAB HOURS FOR 614 TANKS(307 BOOSTERS, 307 CORES)
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Table 137. Summary of Cost Trade Analysis.

Fabrication Method -
Material

Built-Up Structures
Superplastic Forming A1-Li
Superplastic Forming Al

Brake Forming A1-Li
Brake Forming AI

ExtrusionAI-Li
ExtrusionAl

Integrally Machined A!

T1
Dollars

3,563,0OO
3,039,000

3,831,000
3,535,000

4,163,000
3,782,000

4,225,000

T307

Dollars

2,922,100
2,610,300

3,019,200
2,670,200

3,231,500
2,763,100

3,610.000

T1000
Dollars

2,603,2O0
2,321,600

2,716,300
2,420,400

2,895,OO0
2,498,900

2,_9,6OO

In summary, the built-up approach can provide significant cost savings over conventionally

machined cryogenic tank structure.This analysiswas performed with standardmanufacturing

methods and realisticdatainputs.Itisbelievedthatthealuminum-lithium familyof materialscan

provide additional benefitsto an NLS type vehicle by reducing overall structuralweight.

Additional cost savings can bc realizedwith utilizationof alternativefabricationmethods for

cryogenictank structure.

Table 138. Summary of Weight Analysis.

Fabrication Method - Material

Built-Up Structures
Supcrplastic Forming AI-Li
Superplastic Forming A!

Brake Forming AI-Li
Brake Forming Al

Extrusion AI-Li
Extrusion AI

Integrally, Machined AI

Structural Weight
(Lbs)

28,836
32,505

31,306
35,576

31.627
35,970
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Table 139. Predicted LCC Behavior.

Fabrication Method- T1 T307 TI000
Material Dollars Dollars Dollars

Built-Up Structures
Supcrplastic Forming AI-Li
Supc_lasdc Forming AI

Brake Forming AI-Li
Brake Forming A1

Extrusion AI-Li
Extrusion A]

Integrally Machined A!

Table 140.

2,507,000

3,486,000

3,516,000
4,501,OO0

3,944,300
4,866,200

4,225,0OO

1,866,100
2,655,000

2,704,200
3,636,200

3,012,800
3,847,300

3,610,OO0

1,547200

2,366,300

2,401,300

3,386,400

2,676,300
3,583,100

2,649,600

Cost Savings or Penalties for Cryogenic Tank Structures Versus the

Integrally Machined Concept.

Fabrication Method-
Material

Built-Up Structures
Superplastic Forming A1-Li
Supcrplastic Forming Al

Brake Forming AI-Li
Brake Forming Al

Extrusion AI-Li
Extrusion AI

TI

Savings

40.7 %

17.5 %

16.8 %

(6.5 %)

6.6 %

(15.2 %)

0llntegrally Machined AI

T307

Savings

48.3 %

26.5 %

25.1%

(0.7 %)

16.5 %

(6.6 %)

0
|

TI000

Savings

41.6 %

10.7 %

9.4 %

(27.8 %)

1%

(35.7 %)

0

==

4.7 AUTOMATION AND SCALE-UP :. -

g

|

m

s.s

u

Z

[]
I

m

g

Investigati0ns_]moautomation of the fabricati0ni)_ss for NI.,Sdryogenic_tanks were

limited to planning the type of facilitiesthatcould be most cost-effectivefor the nation. An

automated fabricationcellfor supcrplasti'cforming (refertoFigures 290 through 293) could be

included in the plan thatwould eliminatethe requirement fordigging a largepit (which would

eliminatethe concern of toxicwaste enteringintothe ground through hydraulicfluidleaks,and

lower maintc_ce _d _tallation costs)__s above ground forming concept _ _ studiedat

Rockwell forseveralyears and isthe recommendation forre-facilitizationefforts.The automated

fabricationwell would provide for automatic loadingof a partblank,forming, pan removal and
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quenching (air quench ff aluminum-lithium materials are to be utilized). The parts would be loaded

immediately after forming into a cleaning and heat treatment carrousel after which time it would be

trimmed and welded onto the outer skins ( refer to Figure 294). The welded panels would then be

joined into barrel sections (refer to Figure 295) and finally into cryogenic tank structure. The

preliminary plan would utilize existing facilities where available (or modify existing facilities ff

possible) in order _ minimize any re-facili_tion costs. _

!

Figure 290. Hot Loading Part Blank into Automated SPF Press.

Figure 291. Hot Unloading Part.
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Figure 292. Hot Loading of Blank and Quench of Formed Part.

Figure 293. Forming Blank and Loading Part for Thermal Processing.
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I_REWORD

The wcxk reported hen:in covers the proposed effort fox the Type m hat-stiffened panels for the NASA

_m-a_ NAS 1-18590 Task Order 5, "Low Cost SPF Alun_mn Cryogenic Tank Concepts for AI.,S

Future H_c Vehicles', C 1=-_ __ Manager.
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1.0 INTRODUCTION

testS. The cob_,_ lemgth selected for these tests was 60 inches in accordance with an agareetnem with

Geae_l Dynan_ for l:,_lin, comparisons of con:figta'ations having no intmmdia= f=anzs.

The objeoiv¢ of this report is m ddinca_ the type of loading fixun'e., insu'umcntmion, failure load

pr=dicziom, and test lsrrx:_ure required to evaluam the Type HI s_pped-haz panels under uniaxhl

loading.

_J

F_
w

[:i

i H

=F2

1.1 TE_CAL CONTACTS

C. E. Thompson

R. A. Latham

A. R. Del Mtmdo

2.0 SPECIMEN DESCRIPTION

Sta_ss

Stress

_j_ __ (Dew, p)

213.-647-3541

213-647-6776

213-922..0929

Each spedmen consistsofsev_ 2.6-inch-highst_ppe.dhatstiffenersspot'w_Ide,d toa 36- x 60- x

0.155-in,:hplataskinwitha l-inchlongitudinalspotweldpitch(FigureI).The spotwekirows inthe

two hatflangesarc4.5inches_ (hoopwise_don). The in_ heightof thestiffenerswas

necessary to _t for the increased column length r_luix_ for l:m_linc comlmrison. The test

_en drawing, L9111403, is furnished as APl:_ndix A.

Bccausa oflimit_:Imaterialavailability,theSPF stiffeners wererestrictedtothe following"starting

gages":

7475 AI tsm.t= 0.100 inch

2090 AI ts:ma = 0.125 inch

The _ fai!u.r, loadswere conm'_tnedtotheselimkations.

Each ofthetwo specimentypesshown inthefollowingtablehas two replicates,comprisinga tomJ. of

Stiffener Skin

#I 7475 AI 2219 AI

#2 2090 AI-Li 2090 AI-Li

C-4
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Figure l. Type M SPF Panel Configuration
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The ends of each panel am potted with Ve.l._ne m provide local suppcx_ for the introduction of the

compre_ion loads. /-_ =....

w

=

The sm_ural test labora_.s at NASA-Lmglcy will test all four panels.

3.0 TEST TEMPERATURE

Allspecimenswig be testedatambienttemperatureconditions.Testtexture shouldbe recorded

priortoeach testforinclusioninthetestreport.

4.0 TEST MACHINE

L

[]

H
U

U

FI

U

U

A compressiontestmachinewitha loadcapacityof500,000pounds orgr¢atcrand a loadingram of

0.05inch/minuteshouldbc usedfortheType HI paneltests.

5.0 INSTRUMENTATION

Instrumentationwillbc designedtoprovidebothstraingag_dataand dcfle,ctiondatafor wst r_sults

evaluation.A totalof30 straingagesand 6 dcflccttxnctcrsarcspecifiedforPanelwr tests,as shown in

Hgu_ 2. GeneralDynamics willinstallallstraingage,spriortopanelshipmenttoNASA. The

instrumentationrcfcrcnc_drawingisL91111412.

6.0 TEST F'IX'IITRES

The testfixtu_supportstheloadededgesofeach s'pccimcntol_'vcntlocalcripplingand toprovide

simple-supportboundaryconditions to thestiffen="sidaedges.The supportoftheloadededges

consistsofencapsulatingeachloadingcdgc with2-inch--d_pV¢Istoncpottingcompound. The side

edge supportdesignisshown inAppendix B. These am simple"clamp-on"fixtureswithTeflontape

bctwccnthespccimcnand fixtures.PreviousRockwell cxp_cncc has shown thatth¢tapeiseffective

inprovidingsimple-supportconditions.The rcf='cnc¢drawingforthetcstfixn.u_isL9111411,

7.0 TEST PROCEDURE

Each panelwillbe mounted inthecompressiontestmachineina similarmanner tothatusedinType I

paneltesting.The loadwillbe appliedthroughthecombined centroidoftheskin/stiffenersystem.The

C-6
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32

35.4 M

i

i
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64
i

i

X Cap 10
• Skin Back To Back 9

Hat Web 2

T., = 30

A Deflectometers 6

|

Ref. Drawing L4111412

F Load Introduction Pcced Area

Figure 2. Type Ill SPF Panel Insu'umentadon
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c.fr was _ by using the PASCO program and is r_fc_enced to the outer mold line of the skin,

as shown in the following udfle:

Stiffener/Skin

Mmdal

7_5-T62 A1/2219-Tg

2090-T62 AI-Li/2{)90-1"8

t=m

0.100

0.125

e.g.

G_fOML)

0.75

0.85

Foreachpancltest,allgageswillbe m'oe,d out asstandardpracticepriortothestartoftheloading

cycl_.Each panelwillbe loadedcontinuously,withstraingage readings_m:Icd everyI0 seconds

untilfailm'r..The predictedultimataloadsforeachstiffenertype,togcthcrwiththepr_Uctedfailure

mode, arcshown inTablc I.

8.0 DATA REO_

All sn'ain gage and deflector readings at each load increment will bc recorded for each panel test

Inadditiort,allrelevantobservationsconcerningspecimenappearance,procedureincidcms,and

anomalousindic_ons willbenotedand recordedreladvctothecorrespondingloadlevel

One 8.5-x I1-inchglossyphotogr_hicprintand one 85-1incscr_n printwithnegativewillbc

furnishedby thetcstfacilityforeachtcstpane/both _ mountinginthetestmachine and aft_failure

A schematic drawing showing the actual measured locations and orientations of all strain gages and

de.flcctomctcrs will be furnished to the program manager.

9.0 TEST REPORT

A preliminarytestrepopntabulatingallstraingage anddeflectiondatawillbe preparedby theNASA

Sn-ucm_s Laboratoryand submittcdwithin30 days aftertestingof theType HI panelsto:

RoclcwdlInternational,Spac_ Division

C.E. Anton, NAS 1-18590 Task 5 Program Manager

D/284,g41-NA40

12214 Lakcwood BIvd

Downey, CA 90241

for preparation of thefinaltest report.
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11:D-90-2050

T_:_I
PREDICTED ULTIMATE UNIAXIAL COMPRESSION LOADS

FOR TYPE rrI p_

$_rcn_s

s_dI_
CurvedC@
_._0 _0
Su_d I-Iat
CurvedCap

Skin

2219 Al

2090 AI-Li

7475 Al

2090 _-IA
SPF

PanelLo_

233,O0Olbs
(¢_73lb/',,,)

_At_

It It

Column
Buc.kJblg

ii

Column
Buckling

NOTES:
I. Loadprc_ctioncaJculafionsmade foravailablestar_ggages,

tsan= 0.I00and0.125inch;panellength= 60inches;skin
gage= 0.155inch.

2. Thinning profiles we_'c estimamd from Type I panel data.

Meets design cdtema loading

I

m

g

i

B

m

m
i

i

m_

m

m

m

g

m

B_

m
m

m
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41uminum Company of America

Alcoa Technical Center

Product Desian and Mechanics Division

R-curve Fracture Touahness Test Report

Report Date and Time: 03-04-1991 16:36:13

ASTM Test Methods: B646-87 & E561-86

Data reduction proqram: RCURV3 1.BAS Vet 1.02

Mechanical Test No.: 900822-004

Specimen ID: 590316-I-L-T-4

Job Order No.:

Author: RLB

Material/Test Data

Alloy - Temper: 2090-T62

Product: Sheet

Lot/Sample No.: 590316-1

Specimen No.: 4

Test Comment: T62 PRE-SPF

Material Modulus = 11.4 Msi

Tensile Yield Sirenqth_ _ys = 50.0 ksl

Specimen Orientation: L-T

Specimen Type: M(T)

Product Thickness: 0.090 in

Test Dat_: 910222

Test Temperature: 72 deo. F

Test Operator: PDE

Test Plane: T/2

Specimen Data:

Thickness, b = 0.0909 in

Initial Crack Length, 2a0 = 1.475 in

Width, w = 4.880 in

Gaue Span, 2y0 = 8.832 in

Fatique Precrackinq Data:

Maximum Fatigue Load, Pfmax =

Fatigue Cycles = 31,020

Load Ratio, R = 0.1

_fnetmax/_ys = 8.28

2300.0 Ib _fnetmax = 18.82 ksi

Precrack Date: 918222

Kfmax = 10.5 ksi _in

Pass if < 8.5: Yes

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST52A.F'RN

Number of data points: 612

K rate = 2.39 ksi _in/sec

E/Eeff = 1.01

Critical points:

Maximum load:

Final data point:

Best fit linear data:

Lower limit:

Upper limit

Obs #

557

612

107

199

Time

(sec)

22.24

24.44

4.24

7.92

Load

(Ib)

575.6

i 2498.1
I

l

i COD(in)

0.0098

0.0382

0.0004

0.8020

1

1

m

i

1

1

1

ffi

i

1

i

Slope

(Ib/in)

1216016

I

Y-int

(Ib)

50.8

X-int

(in)

-.0000

rt,2

8.999952

# pts

in fit

L

93

Step

size

2

Eeff

(Msi)

11.327

I
1

1

D-]
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R-curve data stored in file:

Soecimen ID: 59@316-1-L-T-4

Material: 2@98-T62

Test comment: T62 PRE-SPF

MT#: 98@822-884

RC52.DAT

Secant Delta

Obs Sloae Load COD aeff kr

# (lb/in) (Ib) (in) (in) (ksi Jin)

199 1215119 2498.1 @.8@28 @.@00 11.44

226 12@2966 3810.6 @.8g25 8.@07 13.87

253 1191944 3521.3 @.@829 @.013 16.31

280 118274@ 4831.9 @.@@34 @.@18 18.77

3@9 1171135 4566.9 @.8@39 @.025 21.38

338 1159894 5885.8 8.8043 8.832 23.96

366 1144859 5555.6 8.@048 8.84@ 26.38

391 1123696 6@02.5 8.8853 0.052 28.83

417 1101577 6436.9 8.@@58 @.@66 31.30

441 1077341 6862.5 @.@863 @.081 33.83

464 1846996 7223.8 8.8869 8.181 36.26

485 1811488 7555.6 @.@@74 @.125 38.76

5@2 972824 7801.9 8.@@8@ @.153 41.03

517 925411 7976.9 @.8@86 @.189 43.32

538 894226 8123.1 @.@090 @.214 45.12

558 866421 8386.3 8.8896 8.238 47.56

557 868@34 8466.9 @.8@98 8.243 48.25

558 7931@i 8364.4 g.81@5 @.385 5@.35

565 75@057 8376.9 @.@I11 @.347 52.41

571 7@7@26 8319.4 @.@117 8.393 54.27

577 696846 • 8363.1 8.@128 @.485 55.17

Kc calculations at maximum ioad:

557 86@@34 8466.9 @.@@98

Kc = 48.3 ksi _in

kc point is INVALID.

Analysis stopoed because

@.243 48.25

Crack lenath = @.981

K rate

(ksi 4in� anet ka0o

sec) (ksi) (ksi Jin)

2.4 18.89 11.43

2.3 13.19 13.78

2.3 15.50 16.11

2.3 17.82 18.45

2.3 28.29 28.98

2.2 22.72 23.27

2.2 24.99 25.42

2.5 27.28 27.47

2.4 29.59 29.46

2.6 31.95 31.4@

2.6 34.21 33.@6

3.@ 36.54 34.58

3.3 38.68 35.7@

3.8 48.88 36.58

3.4 42.63 37.17

3.1 45.82 38.38

2.5 45.78 38.75

52.4 48.83 38.28

7.4 50.34 38.33

7.8 52.61 38.07

3.8 53.64 38.27

in

2.5 45.78 38.75

Valchk = 8.91

load went neaative.

Valchk

=_net/ Valchk

_ys < @.B?

0.22 Y

0.2& Y

@ .31 Y

0.36 Y

0.41 Y

@ .45 Y

g.50 Y

@.55 Y

@. 59 Y

8.64 Y

@.68 Y

8.73 Y

@.77 Y

8.82 N

0.85 N

@.90 N

e.91 N
7

g.96 N

I .@i N

1.05 N

1 .g7 N

=_

8.91 N

1

1

1

1

m

W
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Aluminum Company of America

Alcoa Technical Center "_

Product Desion and Mechanics Division

R-curve Fracture TouQhness Test Report Mechanical Tesi No.: 980822L004
4"

Report Date and Time: 03-01-1991 15:38:51 Specimen ID: 590316-3-L-T-2

AST'M Test Methods: 8646-87 & E561-86 Job Order No.:

Data reduction program: RCURV3_I.BAS Ver, 1.82 Author: RLB

Material/Test Data

Alloy - Temper: 2890-T62

Product: Sheet

Lot/Sample No.: 598316-3

Specimen No.: 2

Test Comment: T62 PRE-SPF

Material Modulus = 11.8 Msi

Tensile Yield Strength, _ys = 58.0 ksi

Specimen Orientation: L-T

Specimen Type: M(T)

Product Thickness: B.898 in

Test Date: 918222

Test Temperature: 72 deq. F

Test Operator: PDE

Test Plane: T/2

Specimen Data:

Thickness_ b = 8.8985 in

Initial Crack Length_ 2a0 = 1.465 in

Width, w = 4.008 in

Gage Span, 2y0 = 0.832 in

Fatigue Precracking Data:

Maximum Fatigue Load, F'fmax =

Fatigue Cycles = 23,955

Load Ratio, R = 8.1

ufnetmax/_ys = 8.28

2308.8 ib _fneimax = 18.83 ksi

Precrack Date: 918222

Kfmax = 18.5 ksi fin

Pass if < 8.5: Yes

Fracture Curve Data Analysis Results:

Fracture Data File Name: TESTSIA.PRN

Number of data points: 662

K rate = 2.18 ksi _in/sec

E/Eeff = 1.14

Warning: E/Eeff is outside recommended limits of [ 8.9 _ E/Eeff _ 1.1 ].

Recommend checkinq calibration and input data. Data will still

be corrected with Eeff, but use with caution.

Critical points:

Maximum load:

Final data point:

Best fit linear data:

Lower limit:

Upper limit

Obs #

611

662

231

287

Time

(sec)

9.20

11.44

Load

(lb)

881_-. 5

-5.5

2806.3

3873.1

COD

(in)

0.0115

0.0380

m_

Slope

(Ib/in)

1 110,:,:8

Y-int

(ib)

349.7

X-int

(in)

0.999908

# pts

in fit

57

Step

size

Eeff ]

(Msi) I

10.307 I
_I

= .

D-6



R-curve data stored In Tile:

Specimen ID: 598316-3-L-T-2

Material: 2898-T62

Test comment: T62 PRE-SPF

MT#: 988922-894

KC51.DAT

Secant Delta

Obs Slope Load COD aeff kr

# (Ib/in) (ib) (in) (in) (ksi _in)

287 1116772 3873,1 0.0832 -8,888 17.71

318 1102192 4436.9 6.0037 0.095 28.39

349 1693144 4991.9 6.0943 0.916 23.65

379 1680236 5516.9 8.0648 0.018 25.66

469 1866289 6631,3 0.6054 6.839 28.38

438 1039646 6515.9 9.0860 0.843 31.93

466 1814736 6978.8 8.0666 0.666 33.73

498 979377 7353.8 8.0872 8.884 36.34

512 936074 7678.1 0.8979 8.115 39.03

538 896717 8838.6 8.8886 9.146 41.95

549 863223 8156,9 8.8891 8.173 43.66

570 830670 8418.0 0.0098 0.201 46.15

591 801149 8661,9 0.0105 0.228 48.68

682 774847 8763.1 8.8110 8,253 59.38

611 758552 8852.5 8.8115 8.276 51.96

612 695261 8679.4 8.8122 8.335 53.68

623 641142 8655.8 6.8132 6.397 56.67

633 620725 8697.5 0.0137 0.422 58.29

K rate Valchk

(ksi Xin/ crnei kapo =_net/ Valchk

sec) (ksi) (ksi _in) oys < 0.89

2.2 16.88 17.72 6.34 Y

2.2 19.41 28.38 8.39 Y

2.1 21.93 22.84 8.44 Y

2.2 24.39 25.24 8,49 Y

2"•_ 26.93 27,59 6.54 Y

2.3 29.48 29.81 8.59 Y

2.4 31.92 31,93 8.64 Y

2.7 34.32 33.64 8.69 Y

3.1 36.81 35,13 6.74 Y

2.8 39.55 36,74 8.79 Y

3.9 41.17 37.32 8.82 N

3.8 43.57 38,47 9.87 N

3.8 46.92 39.63 0.92 N

3.9 47.74 40,89 9.95 N

4.4 49.35 48.50 0.99 N

43.8 51.41 39,71 1.83 N

6.8 54.93 39.69 l.lg N

4.1 56.84 39.79 1.14 N

kc calculations at maximum load:

611 758552 8952.5 8.8115 8.276 51.96 4.4 49.35 4g,59 9,99 N

Kc = 52.0 ksi _in Crack lenoth = 1.009 in Valchk = 6.99

kc point is INVALID.

Analysis stopped because 2a/w is outside of valid comoliance reqion (2a/w h 0.8).
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Aluminum Company of America
Alcoa Technical Center

Product OesiQn and Mechanics Division

R-curve Fracture Touohness Test Report

Report Date and Time: 03-01-1991 15:56:32

ASTM Test Methods: 0646-87 & E561-86

Data reduction prooram: RCURV3.I.BAS Vet 1.82

Mechanical Test No.: ?00822-0@4

Specimen ID: 598324-L-T-5

aob Order No.:

AuthorI RLB

Material/Test Data

Alloy - Temper: 299@-T62

Product: Sheet

Lot/Sample No.: 590324

Specimen No.: 5

Test Comment: T62 POST-SPF

Material Modulus = 11.4 Msi

Tensile Yield Strength, _ys = 50.8 ksi

Specimen Orientation: L-T

Specimen Type: M(T)

Product Thickness: @.09@ in

Test Date: 910225

Test Temperature: 72 deo. F

Test Operator: PDE

Test Plane: T/2

Specimen Data:

Thickness, b = @.0701 in

Initial Crack Lenath, 2a@ = 1.488 in

Width, w = 4.000 in

Gaqe Span, 2y8 = 0.832 in

Fatigue PrecrackinQ Data:

Maximum Fatigue Load, Pfmax =

Fatigue Cycles = 7,808

Load Ratio, R = 0.1

_fnetmax/_ys = 0.26

2308.8 lb

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST54A.PRN

Number of data points: 816

_fnetmax = 13.82 ksi

Precrack Date: 910225

Kfmax = 13.7 ksi _in

Pass if < 0.5: Yes

K rate = 2.54 ksi _in/sec

E/Eeff = 1.02

$ K rate greater than maximum of 150 ksi _in/min recommended by ASTM-E399.

Critical points:

Maximum load:

Final dala point:

Best fit linear data:

Lower limit:

Uoper limit

Obs #

709

816

400

488

Time

(sec)

I 15.96
19.48

I

Load

(Ib)

5411.3

1746.3

932.5

2438.1

COD

(in)

B

i

,,m

I

i

i

i

i

i

m i

Slope I(Ib/in)

918939 1

L

Y-int X-int

(Ib) (in)

-1-.- 0.0080

l

# pts 1in fit

Step

size

Eeff

(Msi)

3 11.142

I "°
m |
i .

J

D-11 •
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R-curve dala stored in file:

Specimen ID: 598324-L-T-5

Material: 2898-T62

Test comment: T62 POST-SPF

MT#: 988822-884

RC54.DAT

Secant Delia

Obs Slooe Load COD aeff

# (Ib/in) (lb) (in) (in)

K rate Valchk

kr (ksi _in/ _net KapD =_net/ Valchk

(ksi _in) sec) (ksi) (ksi _in) _ys < 8.8?

w

U

w

488 917858 2438.1 8.8827 8.881

589 989483 2777.5 g.gg_l 8.887

529 982573 3187.5 8.8835 8.812

558 892459 3414.4 8.8838 8.819

577 879878 3738.1 8.8843 8.829

596 851715 3994.4 8.8847 8.858

614 830310 4246.9 8.8851 8.868

633 818524 4528.1 8.0055 0.078
651 881677 4776.9 0.8868 8.092

678 753828 4998.8 8.8867 8.136

688 737196 5238.1 8.8871 8.151

697 698822 5313.88,88768.19 
787 669881 5393.1 8.8881 8.221

789 666869 5411.3 8.8881 8.225

718 587359 5277.5 8.8890 8.320

711 562983 5248.6 8.8893 8.353

714 559435 5246.9 8.8894 0.358

Kc calculations at maximum load:

789 666869 5411.3 0.0081 0.225

Kc = 39.4 ksi _in Crack lenath =

Kc poinl is valid.

Analysis stopped because 2a/w is outside

14.52 2.5 13.82 14.58 8.28 Y

16.62 2.5 15.81 16.52 8.32 Y

18.69 2.6 17.76 18.48 8.36 Y

28.67 2.4 19.63 28.31 8.39 Y

22.84 2.8 21.66 22.23 8.43 Y

24.89 2.7 23.55 23.76 8.47 Y

26.88 2.8 25.41 25.26 8.51 Y

28.92 2.7 27.31 26.93 8.55 Y

38.91 2.8 29.17 28.41 8.58 Y

33.65 3.6 31.72 29.73 8.63 Y

35.74 2.9 33.78 31.16 8.67 Y

37.53 5.8 35.42 31.61 8.71 Y

39.16 4.1 37.83 32.88 8.74 Y

39.44 3.5 37.31 32.19 8.75 Y

41.88 60.9 40.06 31.39 0.88 N

42.83 23.8 41.21 31.17 8.82 N

43.88 2.8 41.48 31.21 8.83 N

39.44 3.5 37.31 32.19 8.75

8.965 in Valchk = 8.75

of valid comDliance reqion (2a/w i::8.8).

w
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_luminum Comoany of America

Alcoa Technical Center

Product Des,an and Mechanics Division
=

R-curve Fracture Toughness Tes_ Reoort Mechanical Test h_o.: Y00822-004

Reoort Date and Time: 03-81-1991 15:48:52 Soecimen ID: 590325-L-T-4

ASTM Test Methods: 0646-87 & E561-86 Job Order No.:

Data reduction Droqram: RCURV3 I.BAS Ver 1.02 Author: RLB

Material/Test Data

Alloy - Temper: 2098-T62

Product: Sheet

Lot/Sample No.: 590325

Specimen No.: 4

Test Comment: T62 POST-SPF

Material Modulus = 11.8 Ms,

Tensile Yield Strenqth, uys = 50.0 ks,

Specimen Orientation: L-T

SDecimen Type: M(T_

Product Thickness: 0'0?0 in

Test Date: 910222

Test Temoerature: 72 dea. F

Test Ooerator: PDE

Test F'lane: T/2

Soecimen Data:

Thickness. b = g.0732 in

Initial Crack Length, 2a0 = I.500 in

Width. w = 4.888 in

Gage Span. 2y8 = 8.832 in

Fat,qua Precrackinq Data:

Maximum Fatique Load_ Pfmax =

Fatigue Cycles = 10.876

Load Ratio. R = 8.1

_fnetmax/_ys = 8.25

2300.0 Ib _fnetmax = 12.57 ks,

Precrack Date: 910222

Kfmax = 13.2 ks, 4in

Pass if < 0.5: Ye_

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST53A.PRN

Number of data ooiats: 612

K rate = 2.39 ks, 4in/see

E/Eeff = 1.12

Warnino: E/Eeff is outside recommended limits of r 0.9 _ E/Eeff £ 1.1 ].

Recommend checkinq calibration and inout data. Data will still

be corrected with Eeff. but use with caution.

Critical points:

Maximum load:

Final data Doint:

Best fit linear data:

Lower limit:

Upper limit

i

Obs #

507

612

153

217

Time

(sac)

20.24

24.44

Load

(lb)

5835.6

25" m

1291.3

2353.8

i
I COD

l (in)
|

0.0126

0.8351

0.0013

0.0025

w

L •

Slope

(Iblin)

89o _,U_

Y-int

(Ib)

157.2

X-int

(in)

r"2

0.999943

i # pts L Step 1 Eeffin fit size (Ms,)

_L___

65 L 2 J

OR_;NAL P,._C_ B

OF POOR QUAU_ D-16



R-curve data stored in file: RC53.DAT

Specimen ID: 59@325-L-T-4

Material: 2890-T62

Test comment: T62 POST-SPF

_T#: 98@822-884

Secant

Obs Slope

# (Iblin)
i--wDm

217 896835

244 886116

272 874824

3@4 858653

331 841768

358 816398

383 792375

484 763585

428 737336

434 682242

454 571738

467 5466@7

477 51874@

491 478952

5@6 468822

5@7 457852

511 423490

514 421793

Delta

Load COD aeff

(Ib) (in) (in)

2353.8 8.8825 8.@88

2828.6 8.8838 8.888

3263.1 8.8836 8.816

3684.4 8.8841 8.829

4889.4 8.8847 @.842
4467.5 8.8853 8.863

4835.8 8.8859 8.884
5141.3 8.8866 8.Ii@

5436.9 8.8872 8.134

5322.5 @.8887 8.284

Kr

(ksi _in)

13.54

16.33

19.84

21.75

24.44

27.21

38.88

32.66

35.31

39.51

5581.3 8.8894 @.324 42.32

5618.6 8.8181 8.358 44.54

5692.5 8.8188 8.399 46.92

5789.4 8.8117 g.4&l 49.89

5814.4 8.8125 8.492 52.38

5835.6 8.8126 8.496 52.76
5733.8 8.8134 8.556 55.87

5743.1 8.8134 8.559 55.34

K rate Valchk

(ksi 4in/ _nei Kapo =_net/

sec) (ksi) (ksi 4in) _YS

2.4 12.87 13.53 8.26

2.6 15.51 16.22 8.31

2.4 18.87 18.76 8.36

2.1 28.61 21.18 8.41

2.5 23.12 23.51 8.46

2.6 25.71 25.68 8.51

2.8 28.31 27.88 8.57

3.2 38.79 29.56 8.62

2.8 33.29 31.26 8.67

17.5 37.64 3@.68 8.75

3.5 40.57 31.63 8.81

4.3 42.98 32.26 8.86
5.9 45.68 32.73 8.91

5.3 49.41 32.82 8.99

4.1 52.39 33.43 1.85

9.5 52.84 33.55 1.86

14.5 56.41 32.97 1.13

2.2 56.76 33.82 1.14

Kc calcul_tion_ at maximum load:

587 457852 5835.6 8.8126 8.496 52.76 9.5 52.84 33.55 1.86

Kc = 52.8 ksi 4in Crack lenoth = 1.246 in Valchk = 1.86

Kc point is INVALID.

Analysis stopped because 2a/w is outside of valid compliance reqion 2alw > 8.8).

Valchk

< 8.87

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

i

I

U

I

11

i

Z

i
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Aluminum Company of America

Alcoa Technical Center

Product Desion and Mechanics Division

%-curve Fracture Touohness Test Report

Report Date and Time: 03-01-1991 15:25:32

ASTM Test Methods: 8646-87 & E561-86

Data reduction proqram: RCURV3_I.BAS Ver 1.02

Mechanical Test No.: 908822-004

Specimen ID: 590315-1-L-T-4

Job Order No.:

Author: RLB

Material/Test Data

Alloy - Temper: 809g-T62

Product: Sheet

Lot/Sample No.: 598315-1

Specimen No.: 4

Test Comment: T62 PRE-SPF

Material Modulus = 10.8 Msi

Tensile Yield Strenqth, _ys = 55.0 ksi

Specimen Orientation: L-T

Specimen Type: M(T)

Product Thickness: 0.088 in

Test Date: 918221

Test Temperature: 72 deo. F

Test Operator: PDE

Test Plane: T/2

Specimen Data:

Thickness, b = g.gB85 in

Initial Crack Length, 2a0 = 1.578 in

Width, w = 3.980 in

Gage Span, 2y0 = 8.832 in

Fatigue F'recrackinq Data:

Maximum Fatigue Load, Pfmax =

Fatigue Cycles = 45°635

Load Ratio, R = 8.I

_fnetmax/_ys = 0.17

2800.8 lb _fnetmax = 9.38 ksi

Precrack Date: 918221

kfmax = 9.9 ksi Jin

Pass if < 8.5: Yes

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST48A.F'RN K rate = 1.47 ksi 4in/see

Number oq data points: 765 E/Eeff = 0.95

Critical points:

Maximum load:

Final data point:

Best fit linear data:

Lower limit:

Upper limit

=

Obs # Time

(sec)

695 27.76

765 30.56

52_

269

2.04

10.72

Load

(Ib)

8172.5

-3.8

COD

(in)

0.0112

0.0421

j -.0001
0.0023

I ....

l

I

m
J

I

g

=

i

mm

[]

I

III

! J

i i

E

m

!

_--
i

ii
W_

Slope

(Ib/in)

Y-int

(ib)

X-int

(in)

rt,2 # pts

in fit

Step

size

1097543 93.0 -.0001 8. 999946 218 3

=

Eeff

(Msi)

j .o_0

I

m

D-21
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R-curve data stored in file:

Specimen IP: 598315-I-L-T-4

Material: 8890-T62

Test comment: T62 PRE-SF'F
MT#: 908822-084

Secant Delta k rate Valchk

Obs Slope Load COD aeff kr (ksi _in/ _net kap0 =_net/

# (lb/in) (lb) (in) (in) (ksi Jin) sec) (ksi) (ksi _in) _ys
m_ .....

269 1091762 2613.8 0.8823 8.004 12.96 1.5 12.29 12.92 8.22

299 1877264 3124.4 8.0028 8.013 15.62 2.2 14.80 15.44 8.27

337 1862817 3625.6 8.8833 8.822 18.28 1.7 17.31 17.92 0.31

365 1045868 4188.8 8.8038 8.833 28.93 2.4 19.81 28.38 8.36

401 1831113 4619.4 8.8844 8.843 23.73 1.9 22.45 22.83 8.41

436 1814466 5184.4 8.8049 8.054 26.49 2.0 25.85 25.22 0.46

466 996969 5563.1 8.8855 8.066 29.19 2.2 27.60 27.49 8.58

504 978492 6815.0 8.8861 8.879 31.94 1.8 38.19 29.72 8.55

532 957125 6425.8 8.8866 8.895 34.68 2.4 32.78 31.75 0.59

561 934222 6823.1 8.8872 8.112 37.32 2.3 35.28 33.72 8.64

593 914487 7211.3 8.8078 8.128 39.99 2.1 37.82 35.63 8.69

623 886411 7543.1 8.8084 8.158 42.69 2.2 48.41 37.27 8.73

646 838542 7773.8 8.8092 8.191 45.63 3.2 43.33 38.41 8.79

672 806248 8835.0 8.8899 8.221 48.42 2.7 46.12 39.78 8.84

684 752466 8868.1 8.8186 8.273 50.97 5.3 48.98 39.87 8.89

695 727825 8172.5 8.8112 0.299 52_88 4.3 58.97 48.38 8.93

696 655849 7997.5 8.8121 8.378 55.71 78.6 54.66 39.52 0.99

787 645119 8115.6 8.8125 8.391 57.22 3.4 56.33 48.18 1.82

kc calculations at maximum load:

695 727825 8172.5 8.8112 8.299 52.88 4.3 58.97 48.38 8.93

Kc = 52.9 ksi _in Crack lenoth = 1.884 in Valchk = 8.93

Kc point is INVALID.

Analysis stopped because 2a/w is outside of valid comDliance reqion (2alw > 8.8).

Valchk

< 0.8?

Y
Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

tq

N

w

D-22



Iii

I

q,
I
I,.,
I

I
i.(
I

_N

z

0

v

_l/lO

._4:lll,
O-'_k Vl O

c,.,_

I

I

iI

ii

i i

I

I

I

m

I

i i

I |

i •

i!

D-23

I

I o



w

w

: =:-

l

w

I

I
J
I

I

.,4
N

$

°N

¢)
0
r_

o

,J \

I
0

I

!

\
,=.,_

+'=-,._=...

I I

0 0 0 0 0 ,.3

(,.._.. u! !_-I) _._I

D-24

c;

'0.! :_

0

.1=1

= ) rq

v [_
o

=

_rj o

0

o ] o

°_

O_ _

8 I°I

_ 0

_..

'_

_J

Lw



i •

-...¢..

.%
,4

i)
%a,

m

h
Be

m

m

m

m
m

m

m

i
m
m

m_

m_

m
r

z

m --

i

m

i

mm

m_

•

i --

m_



i

w

m

U

w

Aluminum Company of America

Alcoa Technical Center

Product Desian and Mechanics Division

R-curve Fracture Touahness Tesl Reoort

Report Date and Time: 83-81-1991 15:32:88

ASTM Test Methods: 8646-87 & E561-86

Data reduction proqram: RCURV3 1.BAS Vet 1.02

Material/Test Data

Alloy - Temper: 8090-T62

Product: Sheet

Lot/Sample No.: 590315-2

Specimen No.: 3

Test C6mment: T62 PRE-SF'F
Material Modulus= 11.9 Msi

Tensile Yield Strenqth, =ys = 55.8 ksi

Specimen Data:

Thickness, b = 8.:8888 in

Initial Crack Length, 2a8 = 1.580 in

Fatique Precrackinq Data:

Maximum Fatique Load, Pfmax = 2580.8 Ib

Fatique Cycles = 12,269

Load Ratio, R = 8.1

_fnetmax/=ys = 8.21

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST47A.F'RN

Number of data points: 867

Mechanical Test No.: 900822-804

Specimen ID: 590315-2-L-T-3

Job Order No.:

Author: RLB

Specimen Orientation: L-T ,,

SDecimen Type: M(T)
Product Thickness: _01088 in

Test Date: 918228

Test Temperature: 72 deq. F

Test Operator: PDE

Test Plane: T/2

Width, w = 4.eee in

Gage Span, 2y8 = 8.832 in

_fneimax = 11.36 ksi

Precrack Date: 910220

kfmax = 12.8 ksi Jin

Pass if < 0.5: Yes

K rate = 7.70 ksi &in/see

E/Eeff = 1.81

K rate areater than maximum of 150 ksi &in/rain recommended by ASTM-E399.

Critical points:

Maximum load:

F'inal data point:

Best fit linear data:

Lower limit:

Upper limit

Obs fl

828

867

265

28 4

Time

(sec)

33.08

34.64

Load

(lb%

1226.9

2450.6

4----

COD

(in)

0.0143

8.0455

0.0010

0.0020

y

i

Slope

(Ib/in)

1206579

Y-int

(lb)

X-int

(in)

-.0000

rs._2

0.999975

i # ptsin fit

I

I 20 lI

Step

size I Eeff(Msi)
I

11.833

D-26
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R-curve data stored in file:

Specimen ID: 598315-2-L-T-3

Material: 8898-T62

Test comment: T62 PRE-SPF

MT#: 90g822-884

RC47.DAT

Secant Delta k rate

Obs Slope Load COD aeff Kr fksi _in/

# (lb/in) (lb) (in) (in) (ksi _in) sec)

284 1206417 2450.6 8.0020 8.ggg 11.72 7.7

385 1182431 3115.8 9.8826 9.013 15.88 4.0

351 1159942 3778.6 0.0832 0.027 18.48 1.8

397 1137058 4484.4 g.gg38 g.g48 21.84 1.8

439 1115339 583i.3 B_g845 _0.0S3 25.25 2.B

485 1g98359 5625.6 e.ggs1 9.068 28.64 1.8

530 1865909 6195.6 0.0058 0.684 31.99 1.9

577 1939986 6738.8 8.0065 g.101 35.34 l.B

619 1888482 7240,6 8.8072 8,123 38.72 2.8

651 964528 7636.3 8.8879 8.155 42.81 2.6

682 916143 7981.9 8.0887 8.192 45.41 2.7

726 843130 8278.6 8.8998 9.254 49.72 2.4

753 775983 8482.5 8.8189 8.317 53.96 3.9

763 732488 8564.4 8.gli7 8.362 56.73 6.9

781 691662 8694,4 9.g125 8.486 68.gl 4.6

811 668126 8958.1 8.0134 8.433 63.41 2.8

816 636931 8925.8 8.0140 8.470 65.46 18.3

828 638529 9836.3 8.8143 8.478 66.78 2.8

829 638715 9835.8 8.8143 8.478 66.76 -8.6

Valchk

onet kaoo =onet/

(ksi) (ksi Jin) _ys

11.14 11.72 g.2g Y

14.31 14.98 8.26 Y

17.51 18.83 8.32 Y

28.67 21.86 8.38 Y

27.85 26.98 e.49 Y

38.19 29.63 8.55 Y

33.33 32.23 8.61 Y

36.58 34.63 8.66 Y

39.62 36.52 8.72 Y

42.88 38.17 8.78 Y

47.19 39.55 8.86 N

51.68 48.57 8.94 W

54.78 48.96 1.88 N

58.53 41.58 1.86 N

62.29 42.84 1.13 N

65.81 42.68 1.18 N

66.49 43.21 1.21 N

66.46 43.21 1,21 N

Kc calculations at maximum load:

828 638529 9836.3 8.8143 8.478 66.78 2.8 66.49 43.21 1.21 N

Kc = 66.8 ksi Jin Crack lenoth = 1._8 in Valchk = 1.2!

Kc point is ItJVALID. _

Analysis stopped because 2a/w is outside of valid compliance reoion (2a/w > 8.8).

Valchk

< 8.8?

l

J

W

I
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I
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g

J

m
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:_luminum Company of America

Alcoa Technical Cenler

Product Desion and Mechanics Division

R-curve Fracture Touohness Test Report

Report Date _nd Time: 03-04-1791 16:29:4e

ASTM Test Methods: 8646-87 & E561-86

Data reduction orooram: RCURV3 1.BAS Vet 1.e2

Mechanical Test No.: 960822-004

Specimen Ib: 590319-L-T-4

Job Order No.:

Author: RLB

Material/Test Data

Alloy - Temper: 8890-T62

Product: Sheet

Lot/Sample No.: 590319

Specimen No.: 4

Test Comment= T62 POST-SPF

Material Modulus = 12.9 Msi

Tensile Yield Strenoth, _ys =

Specimen Data:

Thickness, b = 8.8771 in

Initial Crack Lenqth, 2me =

55.B ksi

1.455 in

Specimen Orientation: L-T

Specimen Type: M(TI

Product Thickness: 8.888 in

Test Date: 918221

Test Temperature: 72 deo. F

Test Ooerator= PDE

Test Plane: T/2

Width. w = 4.889 in

Game Span, 2y8 = 8.832 in

Fatique Precrackinq Data:

Maximum Fatiaue Load, Pfmax =

Fatigue Cycles = 18,037

Load Ratio, R = 8.1

_fnetmax/_ys = 8.21

Fracture Curve Data Analysis Results:

Fracture Data File Name: TEST4?A.PRN

Number of data points: 816

2388.0 ib _fnetmax = 11.72 ksi

Precrack Date: ?18221

Kfmax = 12.3 ksi Jin

Pass if < 8.5: Yes

K rate = 11.37 ksi _in/sec

E/Eeff = 1.89

* K rate ureater than maximum of 150 ksi _in/min recommended by ASTN-E399.

Critical opines:

Maximum load:

Final da_a point:

Best fit linear data:

Lower limit:

UDDer limit I
• |

i Obs # Time ! Load(sec) (Ib)
I

!749 29.9Z 1 8_08._

I e16 32.6e I -3.8

!

I

274 18.92 I 1268.8

287 11.44 1 2366.3
J

Y-int

(Ib)

I 243.3
l

I Slope

Clb/in)

I 1098993

i COD
|

I (in)

!

f
! 0.8121
I 8.8443

i
i
i .8889
I 8.0019

i,X-int J r"2 J # Dts Steo

(in) i 1 in fit I size

-.8882 ( 8.999911 j 14 i 3

i l L_

I Eeff

t (Msi)

i 11.884

I

D-31

I

H

I

I

mm

I

m
m
m
i

I

I |
I :

i

|

I

t IF

]



=

_=

i

L

J

m

i

R-curve data stored in file:

Soecimen ID: 598319-L-T-4

Material: 8890-T62

Test comment: T62 POST-SPF

MT#: 988822-884

RC49.DAT

Obs

#

287

386

345

387

426

467

585

541

576

614

638

655

685

699

715

735

749

758

768

Secant

Slope

(lblin)

1896878

1883847

1866138

1849538

1832879

1813821

995898

978924
937298

915147

879938

842337

802988

757841

695348

657272

646976

586689

585137

Delta

Load COD aeff Kr

(lb) (in) (in) (ksi 4in)

2366.3 8.80i9 8.881 12.66

2928.8 8.8025 8.889 15.79

3459.4 8.8838 8.820 18.83

3976 _._ 8.8836 8.838 21.86

4487.5 8.8841 8.841 24.92

4986.3 8.8847 8.853 28.88

5485.g 8.0053 8.866 31.15

5931.3 8.8859 8.882 34.21

6317.5 8.8865 8.187 37.24

6743.1 8.8971 8.124 48.36

7841.9 8.8878 0.151 43.21

7231.9 8.0084 8.183 45.63

7585.6 8.8891 0.218 48.86

7648.1 8.8099 8.262 51.76

7721.3 8.81-89 8.326 55.36

7853.1 8.8117 8.369 58.55

8080.8 8.8121 0.381 68.32

7843.8 8.8132 8.457 63.47

7959.4 8.8134 0.459 64.53

Kc calculations at maximum load:

749 646976 8888.8 0.8121 8.381 68.32

Kc = 60.3 ksi _in Crack lenath = 1.189 in

Kc ooint is INVALID.

Analysis stopped because load went neqative.

K rate Valchk

(ksi 4in� _net Kapo =_net/

sec) (ksi) (ksi _in) oys

11.4 12.87 12.65 8.22

4.1 15.84 15.65 8.27

1.9 17.91 18.49 8.33

1.8 28.75 21.25 8.38

2.8 23.63 23.99 8.43

1.9 26.52 26.65 8.48

2.1 29.47 29.32 8.54

2.1 32.32 31.78 8.59

2.2 35.15 33.77 8.64

2.8 38.86 36.84 8.69

3.0 48.73 37.64 8.74

3.6 43.04 38.65 8.78

2.7 46.15 48.12 8.84

5.2 49.86 48.88 8.89

5.6 52.98 41.27 8.96

4.8 56.37 41.97 1.82

3.1 58.21 42.76 1.86

78.8 62.38 41.92 1.13

2.6 63.45 42.54 1.15

3.1 58.21 42.76 1.86

Valchk = 1.86

Valchk

< 8.8?

Y

Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

i

=
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).fun,inure Company of America

Alcoa Technical Center

Product l)esion and Mechanics Division

R-curve Fracture Touohness Test Report

Report Date and Time: 03-01-1771 15:88:45

ASTM Test Methods: 8646-87 & E561-86

Data reduction program: RCURV3_I.BAS Ver 1.82

Mechanical Test No.: ?80822-904

Specimen ID: 578329-L-T-1

Job Order No.:

Author: RLB

Material/Test Data

Alloy - Temper: 8878-T62

Product: Sheet

Lot/Sample No.: 598328

Specimen No.: 1

Test Comment: T62 POST-SF'F

Material Modulus = 12,4 Msi

Tensile Yield Strenqth_ oys = 55.8 ksi

Specimen Orientation: L-T

Specimen Type: M(T)

Product Thickness: 8.888 in

Test Date: 918222

Test Temperature: 72 dea. F

Test Ooerator: PDE

Test Plane: T/2

Specimen Data:

Thickness_ b = 8.8731 in

Initial Crack Length, 2a0 = 1.458 in

Width, w = 4.800 in

Gage Span_ 2yg = 0.832 in

Falique Precrackinq Data:

Maximum Fatique Load_ Pfmax =

Fatigue Cycles = 11,516

Load Ratlo, R = g.l

_fnetmax/_ys = g.22

2388.8 lb ofnetmax = 12.34 ksi

Precrack Date: 918222

Kfmax = 12.9 ksi _in

Pass if < g.5: Yes

Fracture Curve Data Analysis Results:

Fracture Data File He me: TESTSgA.PRH

Number of data ooints: 612

K rate = 2.35 ksi _in/sec

E/Eeff = 1.24

Warnino : E/Eeff is outside recommended limits of [ 8.9 _ E/Eeff 4 1.1 ].

Recommend checkinq calibration and input data. Data will still

be corrected with Eeff, but use with caution.

Critical points:

Maximum load:

Final data point:

Best fit linear data:

Lower limit:

Upper limit

Obs fl

551

612

153

223

Time

(see)

Load COD

(Ib) (in)

6998.6 0.8113

2135.6 8.8311

1338.6

2499.4

0.0816

g.8029

Slope

(ib/in)

878443

Y-int

(lb)

-56.7

X-int

(in)

g.0001

r_,2

B.999927

# pts

in fit

7]

Step

size

2

i
Eeff I

(Msi) I

:, mJ_

z

i! r

_ _r_| _ _ _ _ _

OF PGC.'R QU,_Lr_'_" D-36



R-curve data stored in file:

Specimen ID: 59832B-L-T-1

Material: 8890-T62

Test comment: T62 POST-SPF

_T#: 988822-884

rcSB.dat

Secant Delta

Obs Slope Load COD aeff

# fib/in) fib) (in) (in)

K tale

kr (ksi _in/ _net

(ksi Jin) sec) (ksi)

KaDD

(ksi _in)

Valchk

=_net/ V_Ichk

_ys < 8.8?

m=

J

i

223 877118 2499.4 8.0829 e_1
248 868428 2916.9 8.8834 8.887
276 859162 3327.5 8,@839 8.814

389 849999 3736,9 8.8845 8.821

336 839841 4145.@ 0.0858 @.829

362 83@284 4545.8 8.8855 8.837

3B9 817317 4943.1 0.8061 8.847

413 882148 5303.8 8.8867 @.868

437 7B1819 5627.5 8.8873 @.877

46@ 756893 5918.8 8.8879 8.188

483 743312 6248.1 8.8885 8.112

498 698569 6482.5 8.8892 8.156

516 668294 6623.1 8.8100 0.188

526 646358 6728.8 0.0105 8.212

546 625686 6941.9 0.0112 0.236

551 622884 6998.6 8.0113 0,248

552 551939 6885.0 8.8124 0.331

564 498826 6774.4 8.8139 8.422

573 482809 6833.8 8.0142 @.434

Kc calculations at maximum load:

551 622884 6990.6 8.0113 @.240

Kc = 48.8 ksi _i_ Crack lenath =

kc point is INVALID. =

Analysis stopped because 2alw is outside

14.07 2.3 13.42

16.52 2.4 15.74

18.97 2.2 18.85

21.44 1.9 28.39

23.96 2.3 22.76

26.46 2.4 25.11

29.85 2.4 27.54

31.53 2.6 29.85

33.99 2.6 32.14

36.48 2.7 34.44

38.95 2.7 36.75

41.51 4.3 39.13

44.18 3.7 41.67

45.87 4.2 43.31

48.34 3.1 45,71

48.83 2.4 46.18

51.57 68.6 49.29

55.83 8.9 54.34

56.93 3.8 55.57

14.06 8.24 Y

16.48 8.29 Y M i
18.71 @.33 Y

21.82 8.37 Y

23.31 8.41 Y []
25.56 8.46 Y

27.88 8.58 Y

29.83 8.54 Y
31.65 8.58 Y B

33.29 0.63 Y

35.14 0.67 Y Z
36.81 8.71 Y i
37.25 8.76 Y

37.84 0.79 Y

39,84 8.83 N •
39.32 0.84 N W

38.27 0.90 N

38.18 8.99 N i
38.43 1.81 H •

48.83 2.4 46.18 39.32

0.965 in Valc hk = 0.84

: : : = ==

of valid compliance region (2a/w

8.84

> 0.8).
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APPENDIX E

TRANSMISSION ELECTRON MICROSCOPY AND DIFFRACTION PATTERNS
OF 2090 AND 8090 HEAT TREATMENT ANALYSIS
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Selected Area Diffraction Pattern

Aluminum (001)
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Selected Area Diffraction Pattern

Aluminum (111)
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Selected Area Diffraction Pattern

Aluminum (112)
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Selected Area Diffraction Pattern .0

AI (100) + AI3Li 50nm particles, cube-cube orientation
/

J • • • m

• • • • • • • • •

• • • • 0 • • • • •

• • • • • • • • •

• • • • •

E-30



AI2Cu in AI 100 zone axis
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Selected Area Diffraction Pattern

(111) AI + AI2Cu
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Selected Area Diffraction Pattern
(112) AI + AI2Cu
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Selected Area Diffraction Pattern

(112) A! + AI3Li
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Selected Area Diffraction Pattern

(110) AI + AI3Li
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CuAI2 in AI 111 zone axis
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CuAI2 in AI 110 zone axis .,
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H3REWORD

TFD-90-2051

• The wurk reported herein covers the proposed effort for the Type IV hat-stiffened panels for the NASA

contract NAS 1-18590 Task Order 5, "Low Cost SFF Aluminum Cryogenic Tank Concepts for ALS

and Future Hypersonic Vehicles", C. E. Anton, Program Manager.
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1.0 INTRODUCTION

The assembly of the overall tank strucua_ for large cryogenic LH 2 designs requires

longitudinal splice joints between the SPF stiffened-panel sections. The objective of this

report is to define the type of loading fixtm¢, test instrumentation, failure load prediction,

and test procedure that_:_:'-are..........req_' .............to _ate _.............combmeii-=:;............._on' .......weld and reslstance

spotweld doubler splice joint under the biaxial loads of bending and pressure.

1.1 TECHNICAL CONTACTS

C. Thompson

R. Latham

A. Del Mundo

Stress :-

Stress

Project Engine_ign)

213-647-3541

213-647-6776

213-922-0929

W

m

w

w

2.0 SPECIMEN DESCRIPTION

Each specimen consistsof two 9- x 6.75-x O.155-inch platesfusionedge-welded

together, reinforced by an overlaping _el_ doubler, combined with two Type I

stepped-hat stiffeners. The pressure load across the joint (hoop tension) is carried by

spotwelding the stiffener flanges, skin, and doubler together with three-spotweld clusters,

as shown in Figure I. Two replicates for each of the following material combinations will

be tested:

#I

Stiffener Skin Doubler

7475 A1 2219 AI 2219 A1

#2 2090 A1-Li 2090 AI-Li 2090 A1-Li

The referencedrawing isL9111413

3.0 TEST TEMPERATURE

Ambient test conditions will be specified for all specimens. Test temperature should be

recorded prior to the strucnnal test for inclusion in the test report.

F-4
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4.0 "TEST MACHINE

A compression test machine with a load capacity of 200,000 pounds or greater and a

loading rate of 0.05 inch/minute should be used for applying the axial load to each Type IV

panel. Actuators with total load capacityof 150,000 pounds will be used to apply the

wansverse load to each paneL .........

5.0 INSTR_NTATION

Both strain gage and deflectometer data will be measured, with eleven strain gages and five

deflectometers required for each panel. The locations of these gages and deflectometers are

shown in Figure 2.

W

w

w

6.0 TEST FIXTURES

The support of the loaded axial (Nx) edges consists of potting the ends with Velstone to a

depth of two inches surrounding the stiffener and skin. The panel side edges will be held

in guided supports that have been radiused to provide simple support and still allow

introduction of the transverse load (pressure) to the specimen. The transverse load will be

introduced to the panel with small segmented pads to prevent the edges from accepting axial

load introduction by the longitudinal test machine. A whiffletree arrangement will be used

so that only two actuators will be needed to apply the transverse loading, as shown in

Figure 3.

The reference drawing for the test fixture is Lg111441

7.0 TEST PROCEDURE

Each specimen will be mounted in the test machine and aligned with the side edges

surrounded by the guides to provide simple support (Figure 3). The transverse loads will

be introduced by the actuators through the whiffletree system. The loading will be applied

in the ratio of Nx/Ny = - 1.086 (ultimate biaxial loading criteria) continuously until failure is

achieved. The application of the P1 axial load will be through the centroid of the two

stiffeners plus joint splice configuration. This centroid has been calculated to be 0.32 inch

with reference to the outer skin mold line.

F-6
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Figur_ 3. Type IV SPF Panel Loading Setup
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The strain gages and deflectomeu_zs will be read at 10-second intervals until failure. As is

standard practice, all gages will be zeroed out prior to the start the of loading for each

panel. The predicted ultimate loads for each Type IV panel are stmmmfized in Table L

8.0 DATA REOUIR_D

All strain gage and deflectometer readings at each load increment will be recx_rded for each

panel test. In addition, all relevant observations concerning specimen appearance,

procedure incidents, and anomalous indications will be noted and recorded relative to the

corresponding load level.

One 8.5- x 11-inch glossy photographic print and one 85-line screen print with negative

will be furnished by the test facility for each test panel both after mounting in the _st

machine and after failure

A schematic drawing showing the actual measured locations and orientations of all strain

gages and deflectometers will be furnished to _e_pro_ manager. _ _'

REPORT _9.0 TEST _.....

A preliminarytestreporttabulatingallstraingageand deflectiondatawillbe preparedby

_ _ _ _ c _ =- _'_7 : _ daytheNASA-Langley StructuresLaboratoryand submittedwithin30 s aftertestingofthe

Type IV panelsto:

Rockwell International, Space Division

C. E. Anton, NAS1-18590 Task 5 Program Manager

D/284, 841-NA40

12214 Lakewood Blvd

Downey, CA 90241

for preparation of the final test report.
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Table I

PREDICTED BIAXIAL FAILURE LOADS FOR TYPE IV PANELS

Panel

Type

7475/2219

2090/2090

NOTES:
1.

.

Predicted

Load Intensity*
Lb/'m.

Nx = -9125

Ny = +8402
i: ll|

Nx =-5975

Ny -- +5500

P1
Total Load

Lbs

164,250

107,550

1'2
Total Load

Lbs

108,218

70,840

• m|,l .l|ll

Predicted
Failure
Mode

SHEAR-lst

Spotweld
SHEAR-Ist

Spotweld

Based on preliminary GD weld allowables. The ratio Nx/Ny = -I.086
will be maintained throughout the loading to failure.

Splice doubler thickness = 0.09 inch

The predicted failure loads PI and P2 are the load intensity values times
the respective panel dimensions.

w

L =

W

F-
w

=
w F-IO



U

i
g

T

u

Z

II

THIS PAGE INTENTIONALLY LEFT BLANK.-
II

I

J

[]

[]

m

[]

m

U

|

i
m

I

[]

i



r 24 I 23 1 22 I 21 + ....

F

E

D

C

A-A[_

BL__,,',_, NOT FILMED

DET -031 ASS

FOLDOUT FRA_,';E

-, 24

ORIGINAL P_:,_E IS

OF POOR Q_'AL_¢

:__ -i_ .l _ I

SHIM AS REC)30ETW1EEN

-007 & -OOS, _EE NOTE "/---_

\

.187 T0R -O0_-'-J._





az ÷ 2c I z9 1 is

• .,_ - _.

I 17"

A-,_ EEl

#

'59.50

I

, 1
I 1
I '°"s° t Bri'_

i i- \

( BDET -03t ASSY i

; ®

A_qa-14 GOt." 7| REOO
AN_O-41G WASH I_ REOD
AN315-4 NUT 7_ REQ0

SHttd AS IqEQD 8ETW_FN , j--TErL0_ TAPE SEE _OvE ¢

-007 & -009, SEE xOTE 7--_ /\ I
?

._e7 ro_ -oos _ -_._;Z _'

' :" ; ;/ "

B- !_ 1"_ ORIGINAL P_E t$
s:,,.¢:, OF POOR OUALJ,T_

I

at 1' aol ! z9 1

C_

FOLDOUT FRAME

I ,_,_", i F I_ Ar4E

LSH1411 {_-'l_ 1

ze - [ z7



=.



k

I zT-

)21 REF

16

CL 5YU _J_U'r--_

_lL .Zg5 DIA _ MOLES
-_4 |OL"r 71 II;'On
_0-41G WASN ISG REQO
_._-4 NUT ?e REGD

FOLDOUT FRAME

I * z7

- i

I

16 1

/

I;4.00
_lW[

_=

=¢;L--=.=J

N

_.-_._

-0'
-0

ORIQINAL PA_E I_

OF POOR QUALI,'F_





13 ,.,+ , 12

6R]NDINO

" 11 I zo

i

l o

r,,, _

I 9

i t

L

VELSTONE POTT|NG COMPEL

p
i

J

A_$Y SEE CIET

-OOi ASSY S"t_oww I
-Oll ASSY |CINrN:_ TO -CO,=;xc_P,'r_ wo'reo

L4JIIt403-O_I I REO0
L_I_I403-OI_ t REQD I

I

FOLDOUT FR_.IL'IF¢"

_3 't-

OF POOR QU_L.!TY [_:x..I FRAME I

9





.i 9 8 I 7 I 5

2.00 STX Ill(FORE

--C,_INOING, SEE NOT[ 5

l

V[LSTONE POTTING COMP_UNO-.--_

i

!

i

L911_403-00¢ ] REOD ON -001

LJl_=40)-OJ_ I REOD _w, "-OH_

"") i/"
_4 7G

WELD _SY

FOL_OUT FRAME

.TL___-,lFRAME ,,,,i,_I

9 i-,

i
( ORIGINAL F_,,:.E l_

OF POOR QUALITY

s.,. I.- 7 I 6

tl THE -0]_ AS_Y_ e-_,IOULO BE
A'JT 4 S_CN_LD NOT _ T?_

AP_9.Y TEFLON TA_ TO THI

_AR$ TO |NTERF'AC( WITH 1• (_IXO _[CIMEN [NOS SNO
P/d_JkLLEL 1.0_ U&X EACH E

4. USE ,t:2 OIA STRA1W GA_
, Wt4EN $-PPLYING VI[LSTONE

[

_, V(L4-;TON( POTTING COMPO(
|NI"TRNAL AS WELL AS (XT

, I_ROM TI'_ [NO]

_'. IOENTIFY PER LAOIO4-O2G,
I lul*mESS ION St_

t. _['r ucT_. OA EXTmUSIO

L_OIO2-O_2

_IOTES : uNlEss 0T.¢_*=¢.

-! . !





B

o

)





FOLDOUT FRAME _.

.

" .°

oF _ I_OOR QUALITY -

: ,i _:- " • I ....

/ t _ - ImOT mELD_" -005 III_F_" . " _ " 7.0_

...... ... 14.17a,

..... :, B-B [_]

,.-,....... .) H :_)- : _ I " : :._4 _3 _,









]
"011 REr

+

i

. -011

L ii 1113_112 . 0 lSl . ..

FOLDOUT F_AME

ORIGINAL PAQE I$

OF POOR QUALIT_

1

IlO01d TEII1)[II_TUR[ BONO -00; TO "C

uSE 7_44 A • B AOHESIVl[

7. llOyD .007 TO *003 llErOl_E 14,A_HIIIIN
OIA HOI.[II -007 WAY _ I_AOIE f

1_ X I_.00 LG SliT5 OF MATERIAL FO_
I

Ill _t.O IYMI_OI,,S PER $TOSOOOOZ_

II. _AOIO_I_AI_HI¢ AND VISUAL IMSP£CT I_1

q. RII_TAIC[ WELD PER lalL-W-ilSlO

_L iO_wTIrY _ER {.AO_O4-OOZ¢, EXCEPT C

NOTES : u_.Ess o_._w,s¢ s_Eclr_



r • k1__ _ _ .... ._ v_I

• wr






